Bäcklund transformations for the sine–Gordon equations

The generalized sine–Gordon equations z,xt = F(z) in two independent variables x, t include the sine–Gordon z,xt = sin z and the multiple sine–Gordon’s like z,xt = sin z + ½ sin ½z. Among other physical applications all these sine–Gordon’s are significant to the theory of intense ultra-short optical pulse propagation. The sine–Gordon itself has analytical multi-soliton solutions. It also has an infinity of polynomial conserved densities and has auto-Bäcklund transformations which generate a second solution of the sine–Gordon from a first solution – particularly from the solution z ≡ 0. We prove first that the generalized multi-dimensional sine–Gordon in two or more space variables x1, x2, . . . has no auto-Bäcklund transformations. Next we prove that the generalized sine–Gordon’s z,xt = F(z) and z',xt = G(z') have an invertible Bäcklund transformation between solutions z and z' if and only if F and G are solutions of F¨ = α2F, G¨ = β2G where, in general, β = αh-1, α is a complex number and h2(≠ 0) is real. In case h = 1 and F and G are the same function z,xt = F(z) has an auto-Bäcklund transformation if and only if F¨ = α2F. We exhibit the B. ts and a. B. ts in these cases as well as the other B. ts for the generalized sine–Gordon. We conclude that the multiple sine–Gordon’s do not have a. B. ts and infer that, despite the soliton character of the numerical solutions, the multiple sine–Gordon’s are not soluble by present simplest formulations of the two by two inverse scattering method.

[1]  John D. Gibbon,et al.  A new hierarchy of Korteweg–de Vries equations , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  J. Gibbon,et al.  Unusual soliton behaviour in the self-induced transparency of Q(2) vibration-rotation transitions , 1976 .

[3]  S. Byrnes Bäcklund transformations and the equation zxy=F (x,y,z) , 1976 .

[4]  H. Rund Variational problems and Bäcklund transformations associated with the sine-gordon and Korteweg-deVries equations and their extensions , 1976 .

[5]  Hsing‐Hen Chen A Bäcklund transformation in two dimensions , 1975 .

[6]  J. Gibbon,et al.  The interaction ofn-dimensional soliton wave fronts , 1975 .

[7]  R. Lax On the dimension of varieties of special divisors , 1975 .

[8]  Hsing‐Hen Chen General Derivation of Bäcklund Transformations from Inverse Scattering Problems , 1974 .

[9]  T. Tsuneto,et al.  Longitudinal Nuclear Magnetic Resonance in Superfluid ^3He as Internal Josephson Effect , 1974 .

[10]  J. Gibbon,et al.  A general theory of self-induced transparency , 1974 .

[11]  Vladimir E. Zakharov,et al.  A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I , 1974 .

[12]  Sergei Petrovich Novikov,et al.  The periodic problem for the Korteweg—de vries equation , 1974 .

[13]  M. Kruskal The Korteweg-de Vries equation and related evolution equations , 1974 .

[14]  A. Scott,et al.  A restricted Bäcklund transformation , 1973 .

[15]  Ryogo Hirota,et al.  Exact Three-Soliton Solution of the Two-Dimensional Sine-Gordon Equation , 1973 .

[16]  A. Scott,et al.  The soliton: A new concept in applied science , 1973 .

[17]  J. C. Eilbeck,et al.  Multiple soliton and bisoliton bound state solutions of the sine-Gordon equation and related equations in nonlinear optics , 1973 .

[18]  M. Ablowitz,et al.  Nonlinear-evolution equations of physical significance , 1973 .

[19]  J. C. Eilbeck,et al.  Exact Multisoliton Solutions of the Self-Induced Transparency and Sine-Gordon Equations , 1973 .

[20]  T. W. Barnard 2 N π Ultrashort Light Pulses , 1973 .

[21]  Mark J. Ablowitz,et al.  Method for Solving the Sine-Gordon Equation , 1973 .

[22]  Ryogo Hirota,et al.  Exact Solution of the Sine-Gordon Equation for Multiple Collisions of Solitons , 1972 .

[23]  J. C. Eilbeck,et al.  A possible N soliton solution for a nonlinear optics equation , 1972 .

[24]  G. Lamb,et al.  Higher conservation laws for coherent optical pulse propagation in an inhomogeneously broadened medium. , 1972, Applied optics.

[25]  G. Lamb Analytical Descriptions of Ultrashort Optical Pulse Propagation in a Resonant Medium , 1971 .

[26]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[27]  G. Lamb π pulse propagation in a lossless amplifier , 1969 .

[28]  C. S. Gardner,et al.  Korteweg‐de Vries Equation and Generalizations. II. Existence of Conservation Laws and Constants of Motion , 1968 .

[29]  Robert M. Miura,et al.  Korteweg-de Vries Equation and Generalizations. I. A Remarkable Explicit Nonlinear Transformation , 1968 .

[30]  P. Lax INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .

[31]  P. Lebwohl,et al.  Properties of Vortex Lines in Superconducting Barriers , 1967 .

[32]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[33]  G. Lamb Propagation of ultrashort optical pulses , 1967 .

[34]  S. Mccall,et al.  Self-Induced Transparency by Pulsed Coherent Light , 1967 .

[35]  N. Zabusky A Synergetic Approach to Problems of Nonlinear Dispersive Wave Propagation and Interaction , 1967 .

[36]  Brian D. Josephson,et al.  Supercurrents through barriers , 1965 .

[37]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[38]  A. R. Forsyth Theory of Differential Equations , 1961 .

[39]  Luther Pfahler Eisenhart,et al.  A Treatise on the Differential Geometry of Curves and Surfaces , 1961, The Mathematical Gazette.

[40]  T. Skyrme A non-linear theory of strong interactions , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[41]  J. Clairin Sur quelques équations aux dérivées partielles du second ordre , 1903 .

[42]  J. Liouville,et al.  Sur l’équation aux différences partielles ${d^2\log \lambda \over du dv}\pm {\lambda \over 2a^2}=0$. , 1853 .

[43]  T. Schäfer,et al.  Propagation of ultra-short optical pulses in nonlinear media , 2022 .