A lattice Boltzmann model for the ion- and electron-acoustic solitary waves in beam-plasma system

In this paper, a lattice Boltzmann model for the ion- and electron-acoustic solitary waves in beam-plasma system is proposed. By using the Chapman-Enskog expansion and the multi-scale time expansion, a series of partial differential equations in different time scales are obtained. By selecting the appropriate moments of the equilibrium distribution functions, the macroscopic equations are recovered. In numerical examples, we simulate the propagation of the ion- and electron-acoustic solitary waves. Numerical results show that the lattice Boltzmann method is an effective tool for the study of the ion- and electron-acoustic solitary waves in plasma.

[1]  S. Zaleski,et al.  Lattice Boltzmann model of immiscible fluids. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[2]  G. Lakhina,et al.  Broadband electrostatic noise due to nonlinear electron-acoustic waves , 2001 .

[3]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[4]  Yang Guangwu A Lattice Boltzmann Equation for Waves , 2000 .

[5]  R. Treumann,et al.  Turbulence generated by a gas of electron acoustic solitons , 1993 .

[6]  Three-dimensional lattice Boltzmann model for magnetic reconnection. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  H. Matsumoto,et al.  Broadband Plasma Waves in the Boundary Layers , 2000 .

[8]  W. F. El-Taibany Electron-acoustic solitary waves and double layers with an electron beam and phase space electron vortices in space plasmas , 2005 .

[9]  G. Lakhina,et al.  Ion- and electron-acoustic solitons in two-electron temperature space plasmas , 2008 .

[10]  J. Zhou Lattice Boltzmann Methods for Shallow Water Flows , 2003 .

[11]  R. Benzi,et al.  Lattice Gas Dynamics with Enhanced Collisions , 1989 .

[12]  Yeomans,et al.  Lattice Boltzmann simulations of liquid-gas and binary fluid systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  Yeomans,et al.  Lattice Boltzmann simulation of nonideal fluids. , 1995, Physical review letters.

[14]  Ping Dong,et al.  Lattice Boltzmann schemes for the nonlinear Schrödinger equation. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  G. Lakhina,et al.  Evolution of electron beam generated waves resulting in transverse ion heating and filamentation of the plasma , 2001 .

[16]  G. Lakhina,et al.  Ion- and electron-acoustic solitons and double layers in multi-component space plasmas , 2011 .

[17]  O. Filippova,et al.  Lattice-Boltzmann simulation of gas-particle flow in filters , 1997 .

[18]  Y. Khotyaintsev,et al.  Electron-acoustic solitons in an electron-beam plasma system , 2000 .

[19]  Zhenhua Chai,et al.  A novel lattice Boltzmann model for the Poisson equation , 2008 .

[20]  S. Baboolal,et al.  Arbitrary-amplitude electron-acoustic solitons in a two-electron-component plasma , 1991, Journal of Plasma Physics.

[21]  R. Lundin,et al.  High‐frequency waves in the cusp/cleft regions , 1990 .

[22]  C. Carlson,et al.  Scaling of 3D solitary waves observed by FAST and POLAR , 2003 .

[23]  Succi Numerical solution of the Schrödinger equation using discrete kinetic theory. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  Shan,et al.  Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[26]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[27]  Sauro Succi,et al.  Nonlinear Stability of Compressible Thermal Lattice BGK Models , 1999, SIAM J. Sci. Comput..

[28]  G. Lakhina,et al.  Study of nonlinear ion- and electron-acoustic waves in multi-component space plasmas , 2008 .

[29]  G. Lakhina,et al.  Electron acoustic solitons in the Earth's magnetotail , 2004 .

[30]  Sauro Succi Lattice Quantum Mechanics: An Application to Bose–Einstein Condensation , 1998 .

[31]  Irina Ginzburg,et al.  Variably saturated flow described with the anisotropic Lattice Boltzmann methods , 2006 .

[32]  Michihisa Tsutahara,et al.  Lattice Boltzmann method for the compressible Euler equations. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Miki Hirabayashi,et al.  The lattice BGK model for the Poisson equation , 2001 .

[34]  Chenghai Sun,et al.  Lattice-Boltzmann models for high speed flows , 1998 .

[35]  B. Tsurutani,et al.  Some theoretical models for solitary structures of boundary layer waves , 2003 .

[36]  Bo Yan,et al.  Lattice Boltzmann Model Based on the Rebuilding-Divergency Method for the Laplace Equation and the Poisson Equation , 2011, J. Sci. Comput..

[37]  R. Benzi,et al.  The lattice Boltzmann equation: theory and applications , 1992 .

[38]  Sauro Succi,et al.  Lattice Boltzmann equation for quantum mechanics , 1993, comp-gas/9304002.

[39]  G. Lakhina,et al.  Electron acoustic solitary waves in the Earth’s magnetotail region , 2009 .

[40]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results , 1993, Journal of Fluid Mechanics.

[41]  Guangwu Yan,et al.  Lattice Boltzmann method for one and two-dimensional Burgers equation ☆ , 2008 .

[42]  Shiyi Chen,et al.  Lattice Boltzmann computations for reaction‐diffusion equations , 1993 .

[43]  John G. Georgiadis,et al.  Migration of a van der Waals bubble: Lattice Boltzmann formulation , 2001 .

[44]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation , 1993, Journal of Fluid Mechanics.

[45]  Guangwu Yan,et al.  Lattice Bhatnagar—Gross—Krook model for the Lorenz attractor , 2001 .

[46]  Luo Li-Shi,et al.  Theory of the lattice Boltzmann method: Lattice Boltzmann models for non-ideal gases , 2001 .

[47]  T. Cattaert,et al.  Compressive and Rarefactive Electron-Acoustic Solitons and Double Layers in Space Plasmas , 2005 .

[48]  S Succi,et al.  Fast lattice Boltzmann solver for relativistic hydrodynamics. , 2010, Physical review letters.

[49]  Shan,et al.  Lattice Boltzmann model for simulating flows with multiple phases and components. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  Robert S. Bernard,et al.  Boundary conditions for the lattice Boltzmann method , 1996 .

[51]  John Abraham,et al.  Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow , 2007, J. Comput. Phys..

[52]  G. Lakhina,et al.  A mechanism for electrostatic solitary structures in the Earth's magnetosheath , 2009 .

[53]  I. Szunyogh,et al.  Nonlinear Processes in Geophysics Electron Acoustic Solitary Waves with Non-thermal Distribution of Electrons Part of Special Issue " International Workshops on Nonlinear Waves and Chaos in Space Plasmas " , 2022 .

[54]  S. Succi,et al.  Three-Dimensional Flows in Complex Geometries with the Lattice Boltzmann Method , 1989 .

[55]  Skordos,et al.  Initial and boundary conditions for the lattice Boltzmann method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[56]  Guangwu Yan,et al.  Lattice Boltzmann model for wave propagation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  P. Lindqvist,et al.  Detailed analysis of broadband electrostatic noise in the dayside auroral zone , 1991 .

[58]  S Succi,et al.  Ground-state computation of Bose-Einstein condensates by an imaginary-time quantum lattice Boltzmann scheme. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  S Succi,et al.  Numerical validation of the quantum lattice Boltzmann scheme in two and three dimensions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.