Origin of the Landau-Lifshitz hydrodynamic fluctuations in nonequilibrium systems and a new method for reducing the Boltzmann equation

The Landau-Lifshitz fluctuating fluxes in fluctuating hydrodynamics are derived from the deterministic Boltzmann equation with the aid of a reduction method developed by Fujisaka and Mori. Thus it is shown that the hydrodynamic fluctuations innonequilibrium systems are generated by the reduction of variables from theΜ-space distribution function to its five momentum moments, i.e., the hydrodynamic variables. This differs from the Bixon-Zwanzig and Fox-Uhlenbeck theories, in which the Landau-Lifshitz fluctuating fluxes are derived from the molecular fluctuating force in thestochastic Boltzmann-Langevin equation, which is, however, negligible in nonequilibrium systems. Thus the present method improves the Chapman-Enskog reduction method so as to include the hydrodynamic fluctuations generated by the reduction of variables.