LoTSS/HETDEX: Optical quasars
暂无分享,去创建一个
H. Rottgering | M. Jarvis | J. Callingham | P. Best | C. Tasse | T. Shimwell | M. Hardcastle | I. Prandoni | J. Croston | B. Mingo | W. Williams | J. Sabater | K. Duncan | G. Rivera | S. Mooney | L. Morabito | G. Gurkan | R. Cochrane | G. Heald | Matt J. Jarvis | Dan Smith | K. Duncan | P. Best | Daniel J. Smith | Huub Rottgering
[1] D. Smith,et al. The LOFAR Two-metre Sky Survey , 2019, Astronomy & Astrophysics.
[2] G. Brunetti,et al. The LOFAR Two-metre Sky Survey IV. First Data Release: Photometric redshifts and rest-frame magnitudes , 2018, 1811.07928.
[3] H. Rottgering,et al. The Far-Infrared Radio Correlation at low radio frequency with LOFAR/H-ATLAS , 2018, Monthly Notices of the Royal Astronomical Society.
[4] M. Hardcastle,et al. Particle content, radio-galaxy morphology and jet power : all radio-loud AGN are not equal , 2018, 1801.10172.
[5] H. Rottgering,et al. LOFAR/H-ATLAS: the low-frequency radio luminosity-star formation rate relation , 2018, 1801.02629.
[6] M. Hardcastle. A simulation-based analytic model of radio galaxies , 2018, 1801.00667.
[7] A. Myers,et al. The Sloan Digital Sky Survey Quasar Catalog: Fourteenth data release , 2017, 1712.05029.
[8] H. Rottgering,et al. The LOFAR window on star-forming galaxies and AGNs - curved radio SEDs and IR-radio correlation at 0 , 2017, 1704.06268.
[9] Aniruddha R. Thakar,et al. Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe , 2017, 1703.00052.
[10] T. J. Dijkema,et al. The LOFAR Two-metre Sky Survey , 2017 .
[11] M. Jarvis,et al. Evidence that the AGN dominates the radio emission in z ~ 1 radio-quiet quasars , 2017, 1702.00904.
[12] B. Ishak,et al. Statistics, data mining, and machine learning in astronomy: a practical Python guide for the analysis of survey data, by Željko Ivezić, Andrew J. Connolly, Jacob T. VanderPlas and Alexander Gray , 2017 .
[13] S. Kozłowski. VIRIAL BLACK HOLE MASS ESTIMATES FOR 280,000 AGNs FROM THE SDSS BROADBAND PHOTOMETRY AND SINGLE-EPOCH SPECTRA , 2016, 1609.09489.
[14] H. Rottgering,et al. The Lockman Hole project: LOFAR observations and spectral index properties of low-frequency radio sources , 2016, 1609.00537.
[15] F. J. Carrera,et al. The MIXR sample: AGN activity versus star formation across the cross-correlation of WISE, 3XMM, and FIRST/NVSS , 2016, 1607.06471.
[16] J. Conway,et al. LOFAR/H-ATLAS: A deep low-frequency survey of the Herschel-ATLAS North Galactic Pole field , 2016, 1606.09437.
[17] T. Ensslin,et al. LOFAR 150-MHz observations of the Boötes field: catalogue and source counts , 2016, 1605.01531.
[18] G. J. Bendo,et al. AGN are cooler than you think: the intrinsic far-IR emission from QSOs , 2016, 1603.05278.
[19] L. Ho,et al. Star formation in quasar hosts and the origin of radio emission in radio-quiet quasars , 2015, 1511.00013.
[20] Adam A. Miller,et al. THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION , 2015, 1508.04472.
[21] S. Maddox,et al. Herschel-ATLAS: The connection between star formation and AGN activity in radio-loud and radio-quiet active galaxies , 2015 .
[22] D. A. Rafferty,et al. PyBDSF: Python Blob Detection and Source Finder , 2015 .
[23] M. Jarvis,et al. Radio-quiet quasars in the VIDEO survey: evidence for AGN-powered radio emission at S1.4 GHz < 1 mJy , 2014, 1410.3892.
[24] S. Maddox,et al. Herschel-ATLAS: far-infrared properties of radio-loud and radio-quiet quasars , 2014, 1404.5676.
[25] Timothy Heckman,et al. The Coevolution of Galaxies and Supermassive Black Holes: Insights from Surveys of the Contemporary Universe , 2014, 1403.4620.
[26] D. Evans,et al. An X-ray survey of the 2 Jy sample – I. Is there an accretion mode dichotomy in radio-loud AGN? , 2014, 1402.1770.
[27] S. Maddox,et al. Isothermal dust models of Herschel-ATLAS galaxies , 2013, 1309.4102.
[28] Prasanth H. Nair,et al. Astropy: A community Python package for astronomy , 2013, 1307.6212.
[29] C. Reynolds. The spin of supermassive black holes , 2013, 1307.3246.
[30] M. C. Toribio,et al. LOFAR: The LOw-Frequency ARray , 2013, 1305.3550.
[31] Ž. Ivezić,et al. ACTIVE GALACTIC NUCLEUS AND STARBURST RADIO EMISSION FROM OPTICALLY SELECTED QUASI-STELLAR OBJECTS , 2013, 1303.3448.
[32] M. Sikora,et al. MAGNETIC FLUX PARADIGM FOR RADIO LOUDNESS OF ACTIVE GALACTIC NUCLEI , 2013, 1301.5638.
[33] K. Wajima,et al. VERY LONG BASELINE ARRAY IMAGING OF PARSEC-SCALE RADIO EMISSIONS IN NEARBY RADIO-QUIET NARROW-LINE SEYFERT 1 GALAXIES , 2013, 1301.4758.
[34] M. Hardcastle,et al. Numerical modelling of the lobes of radio galaxies in cluster environments – IV. Remnant radio galaxies , 2013, Monthly Notices of the Royal Astronomical Society.
[35] Alan E. E. Rogers,et al. Science with the Murchison Widefield Array , 2012, Publications of the Astronomical Society of Australia.
[36] Brandon C. Kelly,et al. DISCLOSING THE RADIO LOUDNESS DISTRIBUTION DICHOTOMY IN QUASARS: AN UNBIASED MONTE CARLO APPROACH APPLIED TO THE SDSS–FIRST QUASAR SAMPLE , 2012, 1209.1099.
[37] Spain.,et al. Exploring X-ray and radio emission of type 1 AGN up to z ~ 2.3 , 2012, 1208.1716.
[38] A. R. Whitney,et al. The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.
[39] M. Brotherton,et al. Erratum: Updating quasar bolometric luminosity corrections , 2012, 1201.5155.
[40] Ž. Ivezić,et al. The Two-Component Radio Luminosity Function of QSOs: Star Formation and AGN , 2011, 1107.3551.
[41] Adam D. Myers,et al. THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION FOR DATA RELEASE NINE , 2011, 1105.0606.
[42] S. Maddox,et al. The first release of data from the Herschel ATLAS: the SPIRE images , 2010, 1010.5782.
[43] W. Brandt,et al. X-RAY EMISSION FROM OPTICALLY SELECTED RADIO-INTERMEDIATE AND RADIO-LOUD QUASARS , 2010, 1010.4804.
[44] S. Bamford,et al. Herschel-ATLAS: far-infrared properties of radio-selected galaxies , 2010, 1009.5866.
[45] S. Maddox,et al. H-ATLAS : PACS imaging for the Science Demonstration Phase , 2010, 1009.0262.
[46] G. Richards,et al. A CATALOG OF QUASAR PROPERTIES FROM SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 , 2010, 1006.5178.
[47] S. J. Liu,et al. Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .
[48] R. Sambruna,et al. The evolution of radio-loud active galactic nuclei as a function of black hole spin , 2010, 1004.1166.
[49] Eric J. Murphy,et al. THE FAR-INFRARED–RADIO CORRELATION AT HIGH REDSHIFTS: PHYSICAL CONSIDERATIONS AND PROSPECTS FOR THE SQUARE KILOMETER ARRAY , 2009, 0910.0011.
[50] U. Virginia,et al. The relative growth of optical and radio quasars in SDSS , 2009, 0909.4092.
[51] D. Evans,et al. The active nuclei of z < 1.0 3CRR radio sources , 2009, 0904.1323.
[52] R. Blandford,et al. Stability of relativistic jets from rotating, accreting black holes via fully three-dimensional magnetohydrodynamic simulations , 2008, 0812.1060.
[53] P. Marziani,et al. New insights on the QSO radio‐loud/radio‐quiet dichotomy: SDSS spectra in the context of the 4D eigenvector1 parameter space , 2008, 0804.0788.
[54] Ž. Ivezić,et al. The Radio-Loud Fraction of Quasars is a Strong Function of Redshift and Optical Luminosity , 2006, astro-ph/0611453.
[55] R. Becker,et al. Signals from the Noise: Image Stacking for Quasars in the FIRST Survey , 2006, astro-ph/0607335.
[56] J. Lasota,et al. Radio Loudness of Active Galactic Nuclei: Observational Facts and Theoretical Implications , 2006, astro-ph/0604095.
[57] A. Szalay,et al. The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3 , 2006, astro-ph/0601434.
[58] Ž. Ivezić,et al. The host galaxies of radio-loud AGN: mass dependencies, gas cooling and AGN feedback , 2005, astro-ph/0506269.
[59] R. B. MetcalfM.Magliocchetti. The role of black hole mass in quasar radio activity , 2005, astro-ph/0505194.
[60] H. Falcke,et al. Radio sources in low-luminosity active galactic nuclei IV. Radio luminosity function, importance of jet power, and radio properties of the complete Palomar sample , 2005, astro-ph/0502551.
[61] Thomas Henning,et al. The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.
[62] R. McLure,et al. The relationship between radio luminosity and black-hole mass in optically selected quasars , 2004, astro-ph/0408203.
[63] M. Magliocchetti,et al. Is there a dichotomy in the radio loudness distribution of quasars , 2003, astro-ph/0306415.
[64] T. D. Matteo,et al. A Fundamental plane of black hole activity , 2003, astro-ph/0305261.
[65] M. Magliocchetti,et al. The radio-loud/radio-quiet dichotomy: news from the 2dF QSO Redshift Survey , 2003, astro-ph/0301526.
[66] et al,et al. Optical and Radio Properties of Extragalactic Sources Observed by the FIRST Survey and the Sloan Digital Sky Survey , 2002, astro-ph/0202408.
[67] M. SubbaRao,et al. Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.
[68] L. Ho. On the Relationship between Radio Emission and Black Hole Mass in Galactic Nuclei , 2001, astro-ph/0110440.
[69] R. Becker,et al. The Radio Luminosity-Black Hole Mass Correlation for Quasars from the FIRST Bright Quasar Survey and a “Unification Scheme” for Radio-loud and Radio-quiet Quasars , 2001, astro-ph/0103087.
[70] A. Laor. On Black Hole Masses and Radio Loudness in Active Galactic Nuclei , 2000, astro-ph/0009192.
[71] R. Becker,et al. Composite Spectra from the FIRST Bright Quasar Survey , 2000, astro-ph/0008396.
[72] Walter A. Siegmund,et al. The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.
[73] D. Merritt,et al. A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.
[74] T. Zwitter,et al. Eigenvector 1: An Optimal Correlation Space for Active Galactic Nuclei , 2000, The Astrophysical journal.
[75] E. Quataert,et al. Convection-dominated Accretion Flows , 1999, astro-ph/9912440.
[76] J. E. Cabanela,et al. The FIRST Bright Quasar Survey. II. 60 Nights and 1200 Spectra Later , 1998, astro-ph/9912215.
[77] S. Tremaine,et al. The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.
[78] H. Falcke,et al. The Nature of Radio-Intermediate Quasars: What is Radio-Loud and What is Radio-Quiet , 1996, astro-ph/9605165.
[79] E. Greisen,et al. The NRAO VLA Sky Survey , 1996 .
[80] Richard L. White,et al. The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .
[81] R. Narayan,et al. Advection-dominated Accretion: A Self-similar Solution , 1994, astro-ph/9403052.
[82] Maarten Schmidt,et al. VLA observations of objects in the Palomar Bright Quasar Survey , 1989 .
[83] R. Weymann,et al. The radio properties of the broad-absorption-line QSOs , 1984 .
[84] T. Deeming. Fourier analysis with unequally-spaced data , 1975 .
[85] K. Kellermann. The Spectra of Non-Thermal Radio Sources. , 1964 .
[86] T. J. Dijkema,et al. Surveys : a new window on the Universe Special issue The LOFAR Two-metre Sky Survey II . First data release ? , ? ? , 2019 .
[87] S. Maddox,et al. The Herschel (cid:2) -ATLAS data release 1 – I. Maps, catalogues and number counts , 2016 .
[88] A. Tchekhovskoy. Launching of Active Galactic Nuclei Jets , 2015 .
[89] S. Maddox,et al. -ATLAS/GAMA: a difference between star-formation rates in strong-line and weak-line radio galaxies , 2012 .
[90] J. Brinchmann,et al. The host galaxies of radio-loud active galactic nuclei: mass dependences, gas cooling and active galactic nuclei feedback , 2005 .
[91] Andrew King,et al. Accretion Power in Astrophysics: Third Edition , 2002 .
[92] Andrew King,et al. Accretion Power in Astrophysics: Contents , 2002 .
[93] John Kormendy,et al. Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .
[94] James J. Condon,et al. Radio Emission from Normal Galaxies , 1992 .
[95] D. Raine,et al. Accretion power in astrophysics , 1985 .