LoTSS/HETDEX: Optical quasars

The radio-loud/radio-quiet (RL/RQ) dichotomy in quasars is still an open question. Although it is thought that accretion onto supermassive black holes in the centre the host galaxies of quasars is responsible for some radio continuum emission, there is still a debate as to whether star formation or active galactic nuclei (AGN) activity dominate the radio continuum luminosity. To date, radio emission in quasars has been investigated almost exclusively using high-frequency observations in which the Doppler boosting might have an important effect on the measured radio luminosity, whereas extended structures, best observed at low radio frequencies, are not affected by the Doppler enhancement. We used a sample of quasars selected by their optical spectra in conjunction with sensitive and high-resolution low-frequency radio data provided by the LOw Frequency ARray (LOFAR) as part of the LOFAR Two-Metre Sky Survey (LoTSS) to investigate their radio properties using the radio loudness parameter (R =L144 MHz/Li band). The examination of the radio continuum emission and RL/RQ dichotomy in quasars exhibits that quasars show a wide continuum of radio properties (i.e. no clear bimodality in the distribution of ℛ). Radio continuum emission at low frequencies in low-luminosity quasars is consistent with being dominated by star formation. We see a significant albeit weak dependency of ℛ on the source nuclear parameters. For the first time, we are able to resolve radio morphologies of a considerable number of quasars. All these crucial results highlight the impact of the deep and high-resolution low-frequency radio surveys that foreshadow the compelling science cases for the Square Kilometre Array (SKA).

[1]  D. Smith,et al.  The LOFAR Two-metre Sky Survey , 2019, Astronomy & Astrophysics.

[2]  G. Brunetti,et al.  The LOFAR Two-metre Sky Survey IV. First Data Release: Photometric redshifts and rest-frame magnitudes , 2018, 1811.07928.

[3]  H. Rottgering,et al.  The Far-Infrared Radio Correlation at low radio frequency with LOFAR/H-ATLAS , 2018, Monthly Notices of the Royal Astronomical Society.

[4]  M. Hardcastle,et al.  Particle content, radio-galaxy morphology and jet power : all radio-loud AGN are not equal , 2018, 1801.10172.

[5]  H. Rottgering,et al.  LOFAR/H-ATLAS: the low-frequency radio luminosity-star formation rate relation , 2018, 1801.02629.

[6]  M. Hardcastle A simulation-based analytic model of radio galaxies , 2018, 1801.00667.

[7]  A. Myers,et al.  The Sloan Digital Sky Survey Quasar Catalog: Fourteenth data release , 2017, 1712.05029.

[8]  H. Rottgering,et al.  The LOFAR window on star-forming galaxies and AGNs - curved radio SEDs and IR-radio correlation at 0 , 2017, 1704.06268.

[9]  Aniruddha R. Thakar,et al.  Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe , 2017, 1703.00052.

[10]  T. J. Dijkema,et al.  The LOFAR Two-metre Sky Survey , 2017 .

[11]  M. Jarvis,et al.  Evidence that the AGN dominates the radio emission in z ~ 1 radio-quiet quasars , 2017, 1702.00904.

[12]  B. Ishak,et al.  Statistics, data mining, and machine learning in astronomy: a practical Python guide for the analysis of survey data, by Željko Ivezić, Andrew J. Connolly, Jacob T. VanderPlas and Alexander Gray , 2017 .

[13]  S. Kozłowski VIRIAL BLACK HOLE MASS ESTIMATES FOR 280,000 AGNs FROM THE SDSS BROADBAND PHOTOMETRY AND SINGLE-EPOCH SPECTRA , 2016, 1609.09489.

[14]  H. Rottgering,et al.  The Lockman Hole project: LOFAR observations and spectral index properties of low-frequency radio sources , 2016, 1609.00537.

[15]  F. J. Carrera,et al.  The MIXR sample: AGN activity versus star formation across the cross-correlation of WISE, 3XMM, and FIRST/NVSS , 2016, 1607.06471.

[16]  J. Conway,et al.  LOFAR/H-ATLAS: A deep low-frequency survey of the Herschel-ATLAS North Galactic Pole field , 2016, 1606.09437.

[17]  T. Ensslin,et al.  LOFAR 150-MHz observations of the Boötes field: catalogue and source counts , 2016, 1605.01531.

[18]  G. J. Bendo,et al.  AGN are cooler than you think: the intrinsic far-IR emission from QSOs , 2016, 1603.05278.

[19]  L. Ho,et al.  Star formation in quasar hosts and the origin of radio emission in radio-quiet quasars , 2015, 1511.00013.

[20]  Adam A. Miller,et al.  THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION , 2015, 1508.04472.

[21]  S. Maddox,et al.  Herschel-ATLAS: The connection between star formation and AGN activity in radio-loud and radio-quiet active galaxies , 2015 .

[22]  D. A. Rafferty,et al.  PyBDSF: Python Blob Detection and Source Finder , 2015 .

[23]  M. Jarvis,et al.  Radio-quiet quasars in the VIDEO survey: evidence for AGN-powered radio emission at S1.4 GHz < 1 mJy , 2014, 1410.3892.

[24]  S. Maddox,et al.  Herschel-ATLAS: far-infrared properties of radio-loud and radio-quiet quasars , 2014, 1404.5676.

[25]  Timothy Heckman,et al.  The Coevolution of Galaxies and Supermassive Black Holes: Insights from Surveys of the Contemporary Universe , 2014, 1403.4620.

[26]  D. Evans,et al.  An X-ray survey of the 2 Jy sample – I. Is there an accretion mode dichotomy in radio-loud AGN? , 2014, 1402.1770.

[27]  S. Maddox,et al.  Isothermal dust models of Herschel-ATLAS galaxies , 2013, 1309.4102.

[28]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[29]  C. Reynolds The spin of supermassive black holes , 2013, 1307.3246.

[30]  M. C. Toribio,et al.  LOFAR: The LOw-Frequency ARray , 2013, 1305.3550.

[31]  Ž. Ivezić,et al.  ACTIVE GALACTIC NUCLEUS AND STARBURST RADIO EMISSION FROM OPTICALLY SELECTED QUASI-STELLAR OBJECTS , 2013, 1303.3448.

[32]  M. Sikora,et al.  MAGNETIC FLUX PARADIGM FOR RADIO LOUDNESS OF ACTIVE GALACTIC NUCLEI , 2013, 1301.5638.

[33]  K. Wajima,et al.  VERY LONG BASELINE ARRAY IMAGING OF PARSEC-SCALE RADIO EMISSIONS IN NEARBY RADIO-QUIET NARROW-LINE SEYFERT 1 GALAXIES , 2013, 1301.4758.

[34]  M. Hardcastle,et al.  Numerical modelling of the lobes of radio galaxies in cluster environments – IV. Remnant radio galaxies , 2013, Monthly Notices of the Royal Astronomical Society.

[35]  Alan E. E. Rogers,et al.  Science with the Murchison Widefield Array , 2012, Publications of the Astronomical Society of Australia.

[36]  Brandon C. Kelly,et al.  DISCLOSING THE RADIO LOUDNESS DISTRIBUTION DICHOTOMY IN QUASARS: AN UNBIASED MONTE CARLO APPROACH APPLIED TO THE SDSS–FIRST QUASAR SAMPLE , 2012, 1209.1099.

[37]  Spain.,et al.  Exploring X-ray and radio emission of type 1 AGN up to z ~ 2.3 , 2012, 1208.1716.

[38]  A. R. Whitney,et al.  The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.

[39]  M. Brotherton,et al.  Erratum: Updating quasar bolometric luminosity corrections , 2012, 1201.5155.

[40]  Ž. Ivezić,et al.  The Two-Component Radio Luminosity Function of QSOs: Star Formation and AGN , 2011, 1107.3551.

[41]  Adam D. Myers,et al.  THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION FOR DATA RELEASE NINE , 2011, 1105.0606.

[42]  S. Maddox,et al.  The first release of data from the Herschel ATLAS: the SPIRE images , 2010, 1010.5782.

[43]  W. Brandt,et al.  X-RAY EMISSION FROM OPTICALLY SELECTED RADIO-INTERMEDIATE AND RADIO-LOUD QUASARS , 2010, 1010.4804.

[44]  S. Bamford,et al.  Herschel-ATLAS: far-infrared properties of radio-selected galaxies , 2010, 1009.5866.

[45]  S. Maddox,et al.  H-ATLAS : PACS imaging for the Science Demonstration Phase , 2010, 1009.0262.

[46]  G. Richards,et al.  A CATALOG OF QUASAR PROPERTIES FROM SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 , 2010, 1006.5178.

[47]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[48]  R. Sambruna,et al.  The evolution of radio-loud active galactic nuclei as a function of black hole spin , 2010, 1004.1166.

[49]  Eric J. Murphy,et al.  THE FAR-INFRARED–RADIO CORRELATION AT HIGH REDSHIFTS: PHYSICAL CONSIDERATIONS AND PROSPECTS FOR THE SQUARE KILOMETER ARRAY , 2009, 0910.0011.

[50]  U. Virginia,et al.  The relative growth of optical and radio quasars in SDSS , 2009, 0909.4092.

[51]  D. Evans,et al.  The active nuclei of z < 1.0 3CRR radio sources , 2009, 0904.1323.

[52]  R. Blandford,et al.  Stability of relativistic jets from rotating, accreting black holes via fully three-dimensional magnetohydrodynamic simulations , 2008, 0812.1060.

[53]  P. Marziani,et al.  New insights on the QSO radio‐loud/radio‐quiet dichotomy: SDSS spectra in the context of the 4D eigenvector1 parameter space , 2008, 0804.0788.

[54]  Ž. Ivezić,et al.  The Radio-Loud Fraction of Quasars is a Strong Function of Redshift and Optical Luminosity , 2006, astro-ph/0611453.

[55]  R. Becker,et al.  Signals from the Noise: Image Stacking for Quasars in the FIRST Survey , 2006, astro-ph/0607335.

[56]  J. Lasota,et al.  Radio Loudness of Active Galactic Nuclei: Observational Facts and Theoretical Implications , 2006, astro-ph/0604095.

[57]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3 , 2006, astro-ph/0601434.

[58]  Ž. Ivezić,et al.  The host galaxies of radio-loud AGN: mass dependencies, gas cooling and AGN feedback , 2005, astro-ph/0506269.

[59]  R. B. MetcalfM.Magliocchetti The role of black hole mass in quasar radio activity , 2005, astro-ph/0505194.

[60]  H. Falcke,et al.  Radio sources in low-luminosity active galactic nuclei IV. Radio luminosity function, importance of jet power, and radio properties of the complete Palomar sample , 2005, astro-ph/0502551.

[61]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[62]  R. McLure,et al.  The relationship between radio luminosity and black-hole mass in optically selected quasars , 2004, astro-ph/0408203.

[63]  M. Magliocchetti,et al.  Is there a dichotomy in the radio loudness distribution of quasars , 2003, astro-ph/0306415.

[64]  T. D. Matteo,et al.  A Fundamental plane of black hole activity , 2003, astro-ph/0305261.

[65]  M. Magliocchetti,et al.  The radio-loud/radio-quiet dichotomy: news from the 2dF QSO Redshift Survey , 2003, astro-ph/0301526.

[66]  et al,et al.  Optical and Radio Properties of Extragalactic Sources Observed by the FIRST Survey and the Sloan Digital Sky Survey , 2002, astro-ph/0202408.

[67]  M. SubbaRao,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.

[68]  L. Ho On the Relationship between Radio Emission and Black Hole Mass in Galactic Nuclei , 2001, astro-ph/0110440.

[69]  R. Becker,et al.  The Radio Luminosity-Black Hole Mass Correlation for Quasars from the FIRST Bright Quasar Survey and a “Unification Scheme” for Radio-loud and Radio-quiet Quasars , 2001, astro-ph/0103087.

[70]  A. Laor On Black Hole Masses and Radio Loudness in Active Galactic Nuclei , 2000, astro-ph/0009192.

[71]  R. Becker,et al.  Composite Spectra from the FIRST Bright Quasar Survey , 2000, astro-ph/0008396.

[72]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[73]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[74]  T. Zwitter,et al.  Eigenvector 1: An Optimal Correlation Space for Active Galactic Nuclei , 2000, The Astrophysical journal.

[75]  E. Quataert,et al.  Convection-dominated Accretion Flows , 1999, astro-ph/9912440.

[76]  J. E. Cabanela,et al.  The FIRST Bright Quasar Survey. II. 60 Nights and 1200 Spectra Later , 1998, astro-ph/9912215.

[77]  S. Tremaine,et al.  The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.

[78]  H. Falcke,et al.  The Nature of Radio-Intermediate Quasars: What is Radio-Loud and What is Radio-Quiet , 1996, astro-ph/9605165.

[79]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[80]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[81]  R. Narayan,et al.  Advection-dominated Accretion: A Self-similar Solution , 1994, astro-ph/9403052.

[82]  Maarten Schmidt,et al.  VLA observations of objects in the Palomar Bright Quasar Survey , 1989 .

[83]  R. Weymann,et al.  The radio properties of the broad-absorption-line QSOs , 1984 .

[84]  T. Deeming Fourier analysis with unequally-spaced data , 1975 .

[85]  K. Kellermann The Spectra of Non-Thermal Radio Sources. , 1964 .

[86]  T. J. Dijkema,et al.  Surveys : a new window on the Universe Special issue The LOFAR Two-metre Sky Survey II . First data release ? , ? ? , 2019 .

[87]  S. Maddox,et al.  The Herschel (cid:2) -ATLAS data release 1 – I. Maps, catalogues and number counts , 2016 .

[88]  A. Tchekhovskoy Launching of Active Galactic Nuclei Jets , 2015 .

[89]  S. Maddox,et al.  -ATLAS/GAMA: a difference between star-formation rates in strong-line and weak-line radio galaxies , 2012 .

[90]  J. Brinchmann,et al.  The host galaxies of radio-loud active galactic nuclei: mass dependences, gas cooling and active galactic nuclei feedback , 2005 .

[91]  Andrew King,et al.  Accretion Power in Astrophysics: Third Edition , 2002 .

[92]  Andrew King,et al.  Accretion Power in Astrophysics: Contents , 2002 .

[93]  John Kormendy,et al.  Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .

[94]  James J. Condon,et al.  Radio Emission from Normal Galaxies , 1992 .

[95]  D. Raine,et al.  Accretion power in astrophysics , 1985 .