Memristors With Flexible Electronic Applications

In addition to the potential for memristors to be used in logic, memory, smart interconnects, and biologically inspired architectures that could transform traditional silicon-based computing, memristors may enable such transformative technologies on physically flexible substrates. The simple structure of a memristor, which generally consists of a thin film of oxide sandwiched between two metal contacts, contributes to its compatibility with existing and future large area flexible electronics. This is especially true considering that recent work has demonstrated the ability for titanium dioxide-based memristors to be deposited from solution at room temperature by using a sol gel technique on a flexible polymer substrate. The integration of memristors with traditional flexible devices (such as thin-film organic, zinc oxide, or amorphous-Si transistors) may enable the realization of a new paradigm in computing technology through lightweight, inexpensive, flexible electronics.

[1]  R. Stanley Williams,et al.  Electrical characterization of Al/AlOx/molecule/Ti/Al devices , 2005 .

[2]  Sangsul Lee,et al.  Resistance Switching Characteristics for Nonvolatile Memory Operation of Binary Metal Oxides , 2007 .

[3]  I. Baek,et al.  Write Current Reduction in Transition Metal Oxide Based Resistance Change Memory , 2008 .

[4]  G. Gelinck,et al.  Flexible active-matrix displays and shift registers based on solution-processed organic transistors , 2004, Nature materials.

[5]  J. Tour,et al.  The electrical behavior of nitro oligo(phenylene ethynylene)’s in pure and mixed monolayers , 2006 .

[6]  Yanlin Song,et al.  Novel Thermally Stable Single-Component Organic-Memory Cell Based on Oxotitanium Phthalocyanine Material , 2009, IEEE Electron Device Letters.

[7]  R. Ruoff,et al.  Graphene oxide thin films for flexible nonvolatile memory applications. , 2010, Nano letters.

[8]  C. Gerber,et al.  Reproducible switching effect in thin oxide films for memory applications , 2000 .

[9]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[10]  Julien Borghetti,et al.  Coexistence of Memristance and Negative Differential Resistance in a Nanoscale Metal‐Oxide‐Metal System , 2011, Advanced materials.

[11]  R. McCreery,et al.  Electronic characteristics of fluorene/TiO2 molecular heterojunctions. , 2007, The Journal of chemical physics.

[12]  Chun-Hu Cheng,et al.  Low‐Power High‐Performance Non‐Volatile Memory on a Flexible Substrate with Excellent Endurance , 2011, Advanced materials.

[13]  Leon O. Chua Resistance switching memories are memristors , 2011 .

[14]  Wei Lu,et al.  Si/a-Si core/shell nanowires as nonvolatile crossbar switches. , 2008, Nano letters.

[15]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[16]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[17]  Yang Yang,et al.  Electric-field-induced charge transfer between gold nanoparticle and capping 2-naphthalenethiol and organic memory cells , 2005 .

[18]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[19]  J. Tour,et al.  Intrinsic resistive switching and memory effects in silicon oxide , 2011 .

[20]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[21]  Rahul Sarpeshkar,et al.  Organic field-effect transistors with polarizable gate insulators , 2002 .

[22]  Jie Zhang,et al.  Printed flexible memory devices using copper phthalocyanine , 2010 .

[23]  F. Argall Switching phenomena in titanium oxide thin films , 1968 .

[24]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[25]  Luisa D. Bozano,et al.  Mechanism for bistability in organic memory elements , 2004 .

[26]  Sangsig Kim,et al.  Resistance switching memory devices constructed on plastic with solution-processed titanium oxide , 2009 .

[27]  Byung Jin Cho,et al.  Flexible Resistive Switching Memory Device Based on Graphene Oxide , 2010, IEEE Electron Device Letters.

[28]  W. Krautschneider,et al.  Spin-cast composite gate insulation for low driving voltages and memory effect in organic field-effect transistors , 2007 .

[29]  Guoqiang Li,et al.  Coexistence of the bipolar and unipolar resistive switching behaviours in Au/SrTiO3/Pt cells , 2011 .

[30]  Gerwin H. Gelinck,et al.  High-performance solution-processed polymer ferroelectric field-effect transistors , 2005 .

[31]  Non-volatile memory using graphene oxide for flexible electronics , 2010, 10th IEEE International Conference on Nanotechnology.

[32]  Sung-Yool Choi,et al.  A low-temperature-grown TiO2-based device for the flexible stacked RRAM application , 2010, Nanotechnology.

[33]  B. Kahng,et al.  Random Circuit Breaker Network Model for Unipolar Resistance Switching , 2008 .

[34]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[35]  K. Kinoshita,et al.  Deposition Atmosphere Dependency of Nonvolatile Resistance Change Phenomenon in GZO-ReRAM , 2010 .

[36]  Liang Fang,et al.  Transparent flexible resistive random access memory fabricated at room temperature , 2009 .

[37]  J. A. Nichols,et al.  Analog and digital circuits using organic thin-film transistors on polyester substrates , 2000, IEEE Electron Device Letters.

[38]  P. Blom,et al.  Tunable Injection Barrier in Organic Resistive Switches Based on Phase‐Separated Ferroelectric–Semiconductor Blends , 2009 .

[39]  J. Tour,et al.  Resistive switches and memories from silicon oxide. , 2010, Nano letters.

[40]  Memory switching in thermally grown titanium oxide films , 1985 .

[41]  J. Jameson,et al.  Bipolar resistive switching in polycrystalline TiO2 films , 2007 .

[42]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[43]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[44]  L. Chua Memristor-The missing circuit element , 1971 .

[45]  B. Delley,et al.  Role of Oxygen Vacancies in Cr‐Doped SrTiO3 for Resistance‐Change Memory , 2007, 0707.0563.

[46]  S. Seo,et al.  Reproducible resistance switching in polycrystalline NiO films , 2004 .

[47]  Wei Wu,et al.  A hybrid nanomemristor/transistor logic circuit capable of self-programming , 2009, Proceedings of the National Academy of Sciences.

[48]  R. Williams,et al.  How We Found The Missing Memristor , 2008, IEEE Spectrum.

[49]  Sung-Yool Choi,et al.  Interface‐Engineered Amorphous TiO2‐Based Resistive Memory Devices , 2010 .

[50]  Masakazu Aono,et al.  Resistance Switching in Anodic Oxidized Amorphous TiO2 Films , 2008 .

[51]  Sung-Jin Choi,et al.  Highly durable and flexible memory based on resistance switching , 2010 .

[52]  J. Suehle,et al.  A Flexible Solution-Processed Memristor , 2009, IEEE Electron Device Letters.

[53]  U-In Chung,et al.  Improvement of resistive memory switching in NiO using IrO2 , 2006 .

[54]  J. Yang,et al.  Direct Identification of the Conducting Channels in a Functioning Memristive Device , 2010, Advanced materials.

[55]  P. Boolchand,et al.  Dual Chemical Role of Ag as an Additive in Chalcogenide Glasses , 1999 .

[56]  Dashan Shang,et al.  Flexible resistance memory devices based on Cu/ZnO:Mg/ITO structure , 2010 .

[57]  K. Kinoshita,et al.  Fabrication and evaluation of large flexible transparent GZO-ReRAM , 2010 .

[58]  R. Stanley Williams,et al.  Molecule-Independent Electrical Switching in Pt/Organic Monolayer/Ti Devices , 2004 .

[59]  R. Waser,et al.  Coexistence of Bipolar and Unipolar Resistive Switching Behaviors in a Pt ∕ TiO2 ∕ Pt Stack , 2007 .

[60]  Warren Robinett,et al.  Memristor-CMOS hybrid integrated circuits for reconfigurable logic. , 2009, Nano letters.

[61]  K. Kinoshita,et al.  Flexible and transparent ReRAM with GZO memory layer and GZO-electrodes on large PEN sheet , 2011 .

[62]  Tae-Wook Kim,et al.  Stable Switching Characteristics of Organic Nonvolatile Memory on a Bent Flexible Substrate , 2010, Advanced materials.

[63]  J. Yang,et al.  High switching endurance in TaOx memristive devices , 2010 .

[64]  S. Kishida,et al.  Flexible and transparent ReRAM with GZO-memory-layer and GZO-electrodes on large PEN sheet , 2010, 2010 IEEE International Memory Workshop.

[65]  P. Blom,et al.  Retention Time and Depolarization in Organic Nonvolatile Memories Based on Ferroelectric Semiconductor Phase-Separated Blends , 2010, IEEE Transactions on Electron Devices.

[66]  Kamal Asadi,et al.  Organic non-volatile memories from ferroelectric phase-separated blends. , 2008, Nature materials.

[67]  Gerwin H. Gelinck,et al.  Doped polyaniline polymer fuses: Electrically programmable read-only-memory elements , 2004 .

[68]  C. Yoshida,et al.  High speed resistive switching in Pt∕TiO2∕TiN film for nonvolatile memory application , 2007 .

[69]  Jianguo Tian,et al.  Toward all-carbon electronics: fabrication of graphene-based flexible electronic circuits and memory cards using maskless laser direct writing. , 2010, ACS applied materials & interfaces.

[70]  D.S.H. Chan,et al.  A flexible polymer memory device , 2007 .

[71]  S. Möller,et al.  A polymer/semiconductor write-once read-many-times memory , 2003, Nature.

[72]  Yang-Kyu Choi,et al.  Resistive switching of aluminum oxide for flexible memory , 2008 .

[73]  S. Rhee,et al.  Resistive switching characteristics of ZnO thin film grown on stainless steel for flexible nonvolatile memory devices , 2009 .

[74]  J. Ouyang,et al.  Electrical Switching and Bistability in Organic/Polymeric Thin Films and Memory Devices , 2006 .

[75]  L. Goux,et al.  Coexistence of the bipolar and unipolar resistive-switching modes in NiO cells made by thermal oxidation of Ni layers , 2010 .

[76]  Yang Yang,et al.  Organic Memory Device Fabricated Through Solution Processing , 2005, Proceedings of the IEEE.

[77]  W. Marsden I and J , 2012 .

[78]  Henrique L. Gomes,et al.  Reproducible resistive switching in nonvolatile organic memories , 2007 .

[79]  Ru Huang,et al.  Flexible Single-Component-Polymer Resistive Memory for Ultrafast and Highly Compatible Nonvolatile Memory Applications , 2010, IEEE Electron Device Letters.

[80]  Sungho Kim,et al.  Resistive Switching Characteristics of Sol–Gel Zinc Oxide Films for Flexible Memory Applications , 2009, IEEE Transactions on Electron Devices.