Revised triple sampling control charts for the mean with known and estimated process parameters

The primary aim of this research is to propose a revised triple sampling (TS) X¯ chart, where the derivations of new formulae for computing the average run length of the triple sampling (TS) X¯ cha...

[1]  Keming Yu,et al.  A non-parametric CUSUM control chart for process distribution change detection and change type diagnosis , 2020, Int. J. Prod. Res..

[2]  Kai Wang,et al.  Bayesian cross-product quality control via transfer learning , 2020, Int. J. Prod. Res..

[3]  B. Wang,et al.  The variable sampling interval S2 chart with known or unknown in-control variance , 2016 .

[4]  A. Haq,et al.  Enhanced adaptive CUSUM charts for process mean , 2019, Journal of Statistical Computation and Simulation.

[5]  Philippe Castagliola,et al.  Exponential cumulative sums chart for detecting shifts in time-between-events , 2018, Int. J. Prod. Res..

[6]  Philippe Castagliola,et al.  The double sampling S2 chart with estimated process variance , 2017 .

[7]  Min Xie,et al.  A double-sampling SPM scheme for simultaneously monitoring of location and scale shifts and its joint design with maintenance strategies , 2020 .

[8]  Krystel K. Castillo-Villar,et al.  An Improved multivariate generalised likelihood ratio control chart for the monitoring of point clouds from 3D laser scanners , 2018, Int. J. Prod. Res..

[9]  Philippe Castagliola,et al.  A re-evaluation of the run rules xbar chart when the process parameters are unknown , 2018, Quality Technology & Quantitative Management.

[10]  Philippe Castagliola,et al.  Synthetic Double Sampling X̄ Chart with Estimated Process Parameters , 2015 .

[11]  Philippe Castagliola,et al.  A synthetic double sampling control chart for the process mean , 2010 .

[12]  Antonio Fernando Branco Costa,et al.  X̄ Charts with Variable Parameters , 1999 .

[13]  Min Zhang,et al.  Exponential CUSUM Charts with Estimated Control Limits , 2014, Qual. Reliab. Eng. Int..

[14]  Antonio Fernando Branco Costa,et al.  X̄ charts with variable sample size , 1994 .

[15]  Duc Truong Pham,et al.  Identification of patterns in control charts for processes with statistically correlated noise , 2018, Int. J. Prod. Res..

[16]  Sajal Saha,et al.  Variable sampling interval run sum median charts with known and estimated process parameters , 2019, Comput. Ind. Eng..

[17]  Michael B. C. Khoo,et al.  Double sampling np chart with estimated process parameter , 2021, Commun. Stat. Simul. Comput..

[18]  Philippe Castagliola,et al.  Optimal designs of the double sampling X¯ chart with estimated parameters , 2013 .

[19]  S. C. Shongwe,et al.  A side-sensitive double sampling monitoring scheme with estimated process parameters , 2020, Commun. Stat. Simul. Comput..

[20]  Abdul Haq,et al.  A new double sampling control chart for monitoring process mean using auxiliary information , 2018 .

[21]  J. B. Keats,et al.  X¯ chart with adaptive sample sizes , 1993 .

[22]  P. Croasdale,et al.  Control Charts for a Double-Sampling Scheme Based on Average Production Run Lengths , 1974 .

[23]  Philippe Castagliola,et al.  A CUSUM chart for detecting the intensity ratio of negative events , 2018, Int. J. Prod. Res..

[24]  J. M. Jabaloyes,et al.  Combined double sampling and variable sampling interval X chart , 2002 .

[25]  Douglas C. Montgomery,et al.  Evaluation of a three-state adaptive sample size X control chart , 1998 .

[26]  David He,et al.  Design of double- and triple-sampling X-bar control charts using genetic algorithms , 2002 .

[27]  Antonio Costa,et al.  The double sampling range chart , 2017, Qual. Reliab. Eng. Int..

[28]  Lie-Fern Hsu Note on ‘Design of double- and triple-sampling X-bar control charts using genetic algorithms’ , 2004 .

[29]  Pavel Krupskii,et al.  Copula-based monitoring schemes for non-Gaussian multivariate processes , 2019, Journal of Quality Technology.

[30]  Dehui Wang,et al.  Detecting mean increases in zero truncated INAR(1) processes , 2019, Int. J. Prod. Res..

[31]  Alireza Faraz,et al.  An exact method for designing Shewhart and S2 control charts to guarantee in-control performance , 2018, Int. J. Prod. Res..

[32]  M. Shamsuzzaman,et al.  An improved design of exponentially weighted moving average scheme for monitoring attributes , 2020, Int. J. Prod. Res..

[33]  Philippe Castagliola,et al.  A side-sensitive modified group runs double sampling (SSMGRDS) control chart for detecting mean shifts , 2018, Commun. Stat. Simul. Comput..

[34]  G. Celano,et al.  A distribution-free Shewhart-type Mann–Whitney control chart for monitoring finite horizon productions , 2020, Int. J. Prod. Res..

[35]  William H. Woodall,et al.  Guaranteed conditional performance of the S2 control chart with estimated parameters , 2015 .

[36]  Philippe Castagliola,et al.  Guaranteed in‐control performance of the synthetic X¯ chart with estimated parameters , 2018, Qual. Reliab. Eng. Int..

[37]  Michael B. C. Khoo,et al.  Side-sensitive group runs double sampling (SSGRDS) chart for detecting mean shifts , 2015 .

[38]  Axel Gandy,et al.  Guaranteed Conditional Performance of Control Charts via Bootstrap Methods , 2011, 1111.4180.

[39]  Jean-Jacques Daudin,et al.  Double sampling X charts , 1992 .

[40]  F. Aparisi,et al.  The variable sample size variable dimension T2 control chart , 2014 .

[41]  Jaime Mosquera,et al.  Simultaneously guaranteeing the in‐control and out‐of‐control performances of the S2 control chart with estimated variance , 2018, Qual. Reliab. Eng. Int..

[42]  J. A. Nachlas,et al.  X charts with variable sampling intervals , 1988 .