Impact of Soil Moisture–Atmosphere Interactions on Surface Temperature Distribution

AbstractUnderstanding how different physical processes can shape the probability distribution function (PDF) of surface temperature, in particular the tails of the distribution, is essential for the attribution and projection of future extreme temperature events. In this study, the contribution of soil moisture–atmosphere interactions to surface temperature PDFs is investigated. Soil moisture represents a key variable in the coupling of the land and atmosphere, since it controls the partitioning of available energy between sensible and latent heat flux at the surface. Consequently, soil moisture variability driven by the atmosphere may feed back onto the near-surface climate—in particular, temperature. In this study, two simulations of the current-generation Geophysical Fluid Dynamics Laboratory (GFDL) Earth System Model, with and without interactive soil moisture, are analyzed in order to assess how soil moisture dynamics impact the simulated climate. Comparison of these simulations shows that soil moist...

[1]  M. Maugeri,et al.  Evolution of extreme temperatures in a warming climate , 2011 .

[2]  F. Bouttier,et al.  Sequential Assimilation of Soil Moisture from Atmospheric Low-Level Parameters. Part II: Implementation in a Mesoscale Model , 1993 .

[3]  R. Vose,et al.  Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set , 2006 .

[4]  K. Findell Atmospheric Controls on Soil Moisture-Boundary Layer Interactions , 2001 .

[5]  Dara Entekhabi,et al.  The Diurnal Behavior of Evaporative Fraction in the Soil-Vegetation-Atmospheric Boundary Layer Continuum , 2011 .

[6]  P. Huybers,et al.  Frequent summer temperature extremes reflect changes in the mean, not the variance , 2013, Proceedings of the National Academy of Sciences.

[7]  Shian‐Jiann Lin A “Vertically Lagrangian” Finite-Volume Dynamical Core for Global Models , 2004 .

[8]  S. Klein,et al.  The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations , 2004 .

[9]  P. Leeuwen,et al.  Nonlinear data assimilation in geosciences: an extremely efficient particle filter , 2010 .

[10]  Pierre Gentine,et al.  Surface and atmospheric controls 1 on the onset of moist convection over land , 2013 .

[11]  David D. Parrish,et al.  NORTH AMERICAN REGIONAL REANALYSIS , 2006 .

[12]  S. Seneviratne,et al.  Hot days induced by precipitation deficits at the global scale , 2012, Proceedings of the National Academy of Sciences.

[13]  F. Bouttier,et al.  Sequential Assimilation of Soil Moisture from Atmospheric Low-Level Parameters. Part I: Sensitivity and Calibration Studies , 1993 .

[14]  S. Schubert,et al.  Causes of long-term drought in the U , 2004 .

[15]  Huikyo Lee,et al.  Classifying reanalysis surface temperature probability density functions (PDFs) over North America with cluster analysis , 2013 .

[16]  D. Easterling,et al.  Changes in climate extremes and their impacts on the natural physical environment , 2012 .

[17]  R. Koster,et al.  Comparing the Degree of Land-Atmosphere Interaction in Four Atmospheric General Circulation Models , 2013 .

[18]  M. Haylock,et al.  Change in mean temperature as a predictor of extreme temperature change in the Asia–Pacific region , 2005 .

[19]  S. Seneviratne,et al.  Investigating soil moisture-climate interactions in a changing climate: A review , 2010 .

[20]  Elfatih A. B. Eltahir,et al.  Atmospheric Controls on Soil Moisture-Boundary Layer Interactions. Part II: Feedbacks within the Continental United States , 2003 .

[21]  Peter Troch,et al.  Observed timescales of evapotranspiration response to soil moisture , 2006 .

[22]  Pierre Gentine,et al.  Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation , 2011 .

[23]  Paul A. Dirmeyer,et al.  The Role of the Land Surface Background State in Climate Predictability , 2003 .

[24]  Ronald,et al.  GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics , 2012 .

[25]  R.A.M. de Jeu,et al.  Soil moisture‐temperature coupling: A multiscale observational analysis , 2012 .

[26]  J. Neelin,et al.  Long tails in regional surface temperature probability distributions with implications for extremes under global warming , 2012 .

[27]  Paolo D'Odorico,et al.  Preferential states in soil moisture and climate dynamics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  L. Alexander,et al.  The shifting probability distribution of global daytime and night‐time temperatures , 2012 .

[29]  Christoph Schär,et al.  Future changes in daily summer temperature variability: driving processes and role for temperature extremes , 2009 .

[30]  George C. Hurtt,et al.  Carbon cycling under 300 years of land use change: Importance of the secondary vegetation sink , 2009 .

[31]  P. Dirmeyer,et al.  Modeling the Effect of Land Surface Evaporation Variability on Precipitation Variability. Part I: General Response , 2002 .

[32]  P. Loikith,et al.  Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America , 2012 .

[33]  F. Giorgi,et al.  Changes in European temperature extremes can be predicted from changes in PDF central statistics , 2009 .

[34]  A. Betts Coupling of water vapor convergence, clouds, precipitation, and land-surface processes , 2007 .

[35]  Moustafa T. Chahine,et al.  Long tails in deep columns of natural and anthropogenic tropospheric tracers , 2010 .

[36]  D. Lawrence,et al.  GLACE: The Global Land-Atmosphere Coupling Experiment. Part I: Overview , 2006 .

[37]  S. Seneviratne,et al.  Statistical Analyses of Land–Atmosphere Feedbacks and Their Possible Pitfalls , 2010 .

[38]  C. Field Managing the risks of extreme events and disasters to advance climate change adaption , 2012 .

[39]  Sonia I. Seneviratne,et al.  Observational evidence for soil-moisture impact on hot extremes in southeastern Europe , 2011 .

[40]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[41]  Stéphane Bélair,et al.  A Land Data Assimilation System for Soil Moisture and Temperature: An Information Content Study , 2007 .

[42]  Jean-François Mahfouf,et al.  Analysis of Soil Moisture from Near-Surface Parameters: A Feasibility Study , 1991 .

[43]  E. Fischer,et al.  Contribution of land‐atmosphere coupling to recent European summer heat waves , 2007 .

[44]  J. Pal,et al.  A feedback mechanism between soil‐moisture distribution and storm tracks , 2003 .

[45]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[46]  A. Betts,et al.  Coupling between CO2, water vapor, temperature, and radon and their fluxes in an idealized equilibrium boundary layer over land , 2004 .

[47]  V. Brovkin,et al.  Impact of soil moisture‐climate feedbacks on CMIP5 projections: First results from the GLACE‐CMIP5 experiment , 2013 .

[48]  S. Seneviratne,et al.  Impact of soil moisture–atmosphere coupling on European climate extremes and trends in a regional climate model , 2011 .

[49]  K. Findell,et al.  An Idealized Prototype for Large-Scale Land-Atmosphere Coupling , 2013 .

[50]  Elena Shevliakova,et al.  An Enhanced Model of Land Water and Energy for Global Hydrologic and Earth-System Studies , 2014 .

[51]  Pedro Viterbo,et al.  Land-surface, boundary layer, and cloud-field coupling over the southwestern Amazon in ERA-40 , 2005 .

[52]  H. Douville,et al.  The relative influence of soil moisture and SST in climate predictability explored within ensembles of AMIP type experiments , 2006 .

[53]  R. Koster,et al.  Variance and Predictability of Precipitation at Seasonal-to-Interannual Timescales , 2000 .

[54]  C. Bretherton,et al.  The Soil Moisture–Precipitation Feedback in Simulations with Explicit and Parameterized Convection , 2009 .

[55]  D. Lawrence,et al.  Regions of Strong Coupling Between Soil Moisture and Precipitation , 2004, Science.

[56]  B. Cook,et al.  Contribution of soil moisture feedback to hydroclimatic variability , 2009 .

[57]  S. Seneviratne,et al.  Land–atmosphere coupling and climate change in Europe , 2006, Nature.

[58]  K. Mo,et al.  Dependence of Simulated Precipitation on Surface Evaporation during the 1993 United States Summer Floods , 1996 .

[59]  N. Diffenbaugh,et al.  Fine-scale processes regulate the response of extreme events to global climate change. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Dara Entekhabi,et al.  Spectral Behaviour of a Coupled Land-Surface and Boundary-Layer System , 2010 .