Egocentric Analysis of Dynamic Networks with EgoLines

The egocentric analysis of dynamic networks focuses on discovering the temporal patterns of a subnetwork around a specific central actor (i.e., an ego-network). These types of analyses are useful in many application domains, such as social science and business intelligence, providing insights about how the central actor interacts with the outside world. We present EgoLines, an interactive visualization to support the egocentric analysis of dynamic networks. Using a "subway map" metaphor, a user can trace an individual actor over the evolution of the ego-network. The design of EgoLines is grounded in a set of key analytical questions pertinent to egocentric analysis, derived from our interviews with three domain experts and general network analysis tasks. We demonstrate the effectiveness of EgoLines in egocentric analysis tasks through a controlled experiment with 18 participants and a use-case developed with a domain expert.

[1]  Philippe Castagliola,et al.  On the Readability of Graphs Using Node-Link and Matrix-Based Representations: A Controlled Experiment and Statistical Analysis , 2005, Inf. Vis..

[2]  Mira Dontcheva,et al.  MatrixWave: Visual Comparison of Event Sequence Data , 2015, CHI.

[3]  Aristides Gionis,et al.  Suggesting ghost edges for a smaller world , 2011, CIKM '11.

[4]  Bernadette Brereton,et al.  Review of Prell C. (2012) Social Network Analysis: history, theory and methodology Los Angeles, London, New Delhi, Singapore, Washington DC, Sage Publications Ltd. , 2014 .

[5]  Daniel W. Archambault,et al.  Animation, Small Multiples, and the Effect of Mental Map Preservation in Dynamic Graphs , 2011, IEEE Transactions on Visualization and Computer Graphics.

[6]  Ben Shneiderman,et al.  ManyNets: an interface for multiple network analysis and visualization , 2010, CHI.

[7]  Jian Zhao,et al.  Interactive Exploration of Implicit and Explicit Relations in Faceted Datasets , 2013, IEEE Transactions on Visualization and Computer Graphics.

[8]  Michael Burch,et al.  Visualizing the Evolution of Compound Digraphs with TimeArcTrees , 2009, Comput. Graph. Forum.

[9]  Heidrun Schumann,et al.  In Situ Exploration of Large Dynamic Networks , 2011, IEEE Transactions on Visualization and Computer Graphics.

[10]  Danyel Fisher,et al.  Using egocentric networks to understand communication , 2005, IEEE Internet Computing.

[11]  Michael Burch,et al.  Parallel Edge Splatting for Scalable Dynamic Graph Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[12]  Daniel A. McFarland,et al.  Dynamic Network Visualization1 , 2005, American Journal of Sociology.

[13]  Nicholas A. Christakis,et al.  Egocentric Social Network Structure, Health, and Pro-Social Behaviors in a National Panel Study of Americans , 2012, PloS one.

[14]  Jean-Daniel Fekete,et al.  GraphDiaries: Animated Transitions andTemporal Navigation for Dynamic Networks , 2014, IEEE Transactions on Visualization and Computer Graphics.

[15]  Jeffrey Heer,et al.  Tracing genealogical data with TimeNets , 2010, AVI.

[16]  Jean-Daniel Fekete,et al.  Task taxonomy for graph visualization , 2006, BELIV '06.

[17]  Peter Eades,et al.  The Marey Graph Animation Tool Demo , 2000, GD.

[18]  Michael J. McGuffin,et al.  DiffAni: Visualizing Dynamic Graphs with a Hybrid of Difference Maps and Animation , 2013, IEEE Transactions on Visualization and Computer Graphics.

[19]  Jarke J. van Wijk,et al.  Dynamic Network Visualization withExtended Massive Sequence Views , 2014, IEEE Transactions on Visualization and Computer Graphics.

[20]  Aaron Quigley,et al.  Exploring temporal ego networks using small multiples and tree-ring layouts , 2011, ACHI 2011.

[21]  Jian Zhao,et al.  egoSlider: Visual Analysis of Egocentric Network Evolution , 2016, IEEE Transactions on Visualization and Computer Graphics.

[22]  Martin Wattenberg,et al.  Visual exploration of multivariate graphs , 2006, CHI.

[23]  Jean-Daniel Fekete,et al.  Small MultiPiles: Piling Time to Explore Temporal Patterns in Dynamic Networks , 2015, Comput. Graph. Forum.

[24]  Ulrik Brandes,et al.  Asymmetric Relations in Longitudinal Social Networks , 2011, IEEE Transactions on Visualization and Computer Graphics.

[25]  Jean-Daniel Fekete,et al.  ZAME: Interactive Large-Scale Graph Visualization , 2008, 2008 IEEE Pacific Visualization Symposium.

[26]  Florian Reitz,et al.  A Framework for an Ego-centered and Time-aware Visualization of Relations in Arbitrary Data Repositories , 2010, ArXiv.

[27]  Kwan-Liu Ma,et al.  Path Visualization for Adjacency Matrices , 2007, EuroVis.

[28]  M. Wood Bootstrapped Confidence Intervals as an Approach to Statistical Inference , 2005 .

[29]  Mengchen Liu,et al.  StoryFlow: Tracking the Evolution of Stories , 2013, IEEE Transactions on Visualization and Computer Graphics.

[30]  P. John Clarkson,et al.  Matrices or Node-Link Diagrams: Which Visual Representation is Better for Visualising Connectivity Models? , 2006, Inf. Vis..

[31]  Kwan-Liu Ma,et al.  An Efficient Framework for Generating Storyline Visualizations from Streaming Data , 2015, IEEE Transactions on Visualization and Computer Graphics.

[32]  Ben Shneiderman,et al.  A Task Taxonomy for Network Evolution Analysis , 2014, IEEE Transactions on Visualization and Computer Graphics.

[33]  Paolo Bellavista,et al.  A survey of context data distribution for mobile ubiquitous systems , 2012, CSUR.

[34]  C. Prell Social Network Analysis: History, Theory and Methodology , 2011 .

[35]  Tobias Isenberg,et al.  Weighted graph comparison techniques for brain connectivity analysis , 2013, CHI.

[36]  Michael Burch,et al.  The State of the Art in Visualizing Dynamic Graphs , 2014, EuroVis.

[37]  Chen Wang,et al.  Dynamic network visualization in 1.5D , 2011, 2011 IEEE Pacific Visualization Symposium.

[38]  Jean-Daniel Fekete,et al.  Visualizing dynamic networks with matrix cubes , 2014, CHI.

[39]  Martin Wattenberg,et al.  Stacked Graphs – Geometry & Aesthetics , 2008, IEEE Transactions on Visualization and Computer Graphics.

[40]  Markus Hadwiger,et al.  NeuroLines: A Subway Map Metaphor for Visualizing Nanoscale Neuronal Connectivity , 2014, IEEE Transactions on Visualization and Computer Graphics.

[41]  Michel Grossetti,et al.  Where do social relations come from?: A study of personal networks in the Toulouse area of France , 2005, Soc. Networks.