Approximation of general piezoelectric thin shells by conforming finite element methods
暂无分享,去创建一个
[1] P. M. Naghdi,et al. FOUNDATIONS OF ELASTIC SHELL THEORY , 1962 .
[2] P. M. Naghdi,et al. The Theory of Shells and Plates , 1973 .
[3] P. G. Ciarlet,et al. Sur L’Ellipticite du Modele Lineaire de coques de W.T. Koiter , 1976 .
[4] N. Rogacheva,et al. Equations of state of piezoceramic shells , 1981 .
[5] N. Rogacheva. On boundary conditions in the theory of piezoceramic shells polarized along coordinate lines , 1983 .
[6] N. Rogacheva. On Saint-Venant type conditions in the theory of piezoelastic shells , 1984 .
[7] L. K. Chau,et al. The theory of piezoelectric shells , 1986 .
[8] N. Rogacheva. Classification of free piezoceramic shell vibrations , 1986 .
[9] Gérard A. Maugin,et al. Continuum Mechanics of Electromagnetic Solids , 1989 .
[10] Gérard A. Maugin,et al. Electrodynamics Of Continua , 1990 .
[11] T. Ikeda. Fundamentals of piezoelectricity , 1990 .
[12] P. G. Ciarlet,et al. Basic error estimates for elliptic problems , 1991 .
[13] Philippe G. Ciarlet,et al. Existence theorems for two-dimensional linear shell theories , 1994 .