Distinct physiological states of Plasmodium falciparum in malaria-infected patients

Infection with the malaria parasite Plasmodium falciparum leads to widely different clinical conditions in children, ranging from mild flu-like symptoms to coma and death. Despite the immense medical implications, the genetic and molecular basis of this diversity remains largely unknown. Studies of in vitro gene expression have found few transcriptional differences between different parasite strains. Here we present a large study of in vivo expression profiles of parasites derived directly from blood samples from infected patients. The in vivo expression profiles define three distinct transcriptional states. The biological basis of these states can be interpreted by comparison with an extensive compendium of expression data in the yeast Saccharomyces cerevisiae. The three states in vivo closely resemble, first, active growth based on glycolytic metabolism, second, a starvation response accompanied by metabolism of alternative carbon sources, and third, an environmental stress response. The glycolytic state is highly similar to the known profile of the ring stage in vitro, but the other states have not been observed in vitro. The results reveal a previously unknown physiological diversity in the in vivo biology of the malaria parasite, in particular evidence for a functional mitochondrion in the asexual-stage parasite, and indicate in vivo and in vitro studies to determine how this variation may affect disease manifestations and treatment.

[1]  P. Manson-Bahr,et al.  Manson's Tropical Diseases , 1929 .

[2]  Steven Hahn,et al.  Yeast HAP2 and HAP3 activators both bind to the CYC1 upstream activation site, UAS2, in an interdependent manner , 1987, Cell.

[3]  L. Guarente,et al.  A cDNA encoding a human CCAAT-binding protein cloned by functional complementation in yeast. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[4]  R. Snow,et al.  Why do some African children develop severe malaria? , 1991, Parasitology today.

[5]  MJ Mahan,et al.  Selection of bacterial virulence genes that are specifically induced in host tissues , 1993, Science.

[6]  [Comparison of the transmission of malaria in 2 epidemiological patterns in Senegal: the Sahel border and the Sudan-type savanna]. , 1995, Dakar medical.

[7]  M. Kanehisa A database for post-genome analysis. , 1997, Trends in genetics : TIG.

[8]  N. Lang-Unnasch,et al.  Metabolic changes of the malaria parasite during the transition from the human to the mosquito host. , 1998, Annual review of microbiology.

[9]  W. Jarra,et al.  Biased distribution of msp1 and msp2 allelic variants in Plasmodium falciparum populations in Thailand. , 1999, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[10]  S. Krungkrai,et al.  Ultrastructure and function of mitochondria in gametocytic stage of Plasmodium falciparum. , 2000, Parasite.

[11]  Ruben Abagyan,et al.  Match-Only Integral Distribution (MOID) Algorithm for high-density oligonucleotide array analysis , 2002, BMC Bioinformatics.

[12]  E. Beitz,et al.  A Single, Bi-functional Aquaglyceroporin in Blood-stagePlasmodium falciparum Malaria Parasites* , 2002, The Journal of Biological Chemistry.

[13]  Kamolrat Silamut,et al.  Febrile temperatures induce cytoadherence of ring-stage Plasmodium falciparum-infected erythrocytes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R. Bedi,et al.  Manson's Tropical Diseases, 21st edition , 2002 .

[15]  Patricia De la Vega,et al.  Discovery of Gene Function by Expression Profiling of the Malaria Parasite Life Cycle , 2003, Science.

[16]  J. Derisi,et al.  The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum , 2003, PLoS biology.

[17]  Marcos Intaglietta,et al.  Oxygen gradients in the microcirculation. , 2003, Physiological reviews.

[18]  Li Li,et al.  PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data , 2003, Nucleic Acids Res..

[19]  Michael Ashburner,et al.  Ontologies for biologists: a community model for the annotation of genomic data. , 2003 .

[20]  Dmitrij Frishman,et al.  MIPS: analysis and annotation of proteins from whole genomes in 2005 , 2005, Nucleic Acids Res..

[21]  Shuhong Luo,et al.  Oxidative Phosphorylation and Rotenone-insensitive Malate- and NADH-Quinone Oxidoreductases in Plasmodium yoelii yoelii Mitochondria in Situ* , 2004, Journal of Biological Chemistry.

[22]  P. Brown,et al.  Extensive Association of Functionally and Cytotopically Related mRNAs with Puf Family RNA-Binding Proteins in Yeast , 2004, PLoS biology.

[23]  R. Altman,et al.  Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. , 2004, Genome research.

[24]  Nicola J. Rinaldi,et al.  Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.

[25]  Pablo Tamayo,et al.  Metagenes and molecular pattern discovery using matrix factorization , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  D. Koller,et al.  A module map showing conditional activity of expression modules in cancer , 2004, Nature Genetics.

[27]  L. Gerena,et al.  Molecular analysis of Plasmodium falciparum recrudescent malaria infections in children treated with chloroquine in Nigeria. , 2004, The American journal of tropical medicine and hygiene.

[28]  D. Koller,et al.  Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  O. Doumbo,et al.  Serum Levels of the Proinflammatory Cytokines Interleukin-1 Beta (IL-1β), IL-6, IL-8, IL-10, Tumor Necrosis Factor Alpha, and IL-12(p70) in Malian Children with Severe Plasmodium falciparum Malaria and Matched Uncomplicated Malaria or Healthy Controls , 2004, Infection and Immunity.

[30]  Yingyao Zhou,et al.  In vivo transcriptional profiling of Plasmodium falciparum , 2004 .

[31]  Yingyao Zhou,et al.  Malaria Journal in Vivo Transcriptional Profiling of P. Falciparum in Vivo Transcriptional Profiling of Plasmodium Falciparum , 2004 .

[32]  Yingyao Zhou,et al.  The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. , 2005, Molecular and biochemical parasitology.

[33]  Kaisheng Chen,et al.  In silico gene function prediction using ontology-based pattern identification , 2005, Bioinform..

[34]  M. Ashburner Ontologies for Biologists — A Community Model for the Annotation of Genomic Data , 2005, 2005 IEEE Computational Systems Bioinformatics Conference (CSB'05).

[35]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Bindu Gajria,et al.  PlasmoDB: The Plasmodium Genome Resource , 2005 .

[37]  Yingyao Zhou,et al.  In vivo transcriptome of Plasmodium falciparum reveals overexpression of transcripts that encode surface proteins. , 2005, The Journal of infectious diseases.

[38]  C. Ouzounis,et al.  Expansion of the BioCyc collection of pathway/genome databases to 160 genomes , 2005, Nucleic acids research.

[39]  Nathan D. Wolfe,et al.  Common and Divergent Immune Response Signaling Pathways Discovered in Peripheral Blood Mononuclear Cell Gene Expression Patterns in Presymptomatic and Clinically Apparent Malaria , 2006, Infection and Immunity.

[40]  Manuel Llinás,et al.  Comparative whole genome transcriptome analysis of three Plasmodium falciparum strains , 2006, Nucleic acids research.

[41]  H. Ginsburg Progress in in silico functional genomics: the malaria Metabolic Pathways database. , 2006, Trends in parasitology.

[42]  Dmitrij Frishman,et al.  MIPS: analysis and annotation of proteins from whole genomes in 2005 , 2006, Nucleic Acids Res..

[43]  J. Mesirov,et al.  GenePattern 2.0 , 2006, Nature Genetics.

[44]  T. Planche,et al.  Severe malaria: metabolic complications. , 2006, Current molecular medicine.

[45]  J. Mesirov,et al.  Metagene projection for cross-platform, cross-species characterization of global transcriptional states , 2007, Proceedings of the National Academy of Sciences.

[46]  P. Agre,et al.  Aquaglyceroporin PbAQP during intraerythrocytic development of the malaria parasite Plasmodium berghei , 2007, Proceedings of the National Academy of Sciences.

[47]  The Plasmodium genome database Designing and mining a eukaryotic genomics resource , .