On Absolute Moments of Characteristic Polynomials of a Certain Class of Complex Random Matrices
暂无分享,去创建一个
[1] G. Olshanski,et al. Giambelli compatible point processes , 2005, Adv. Appl. Math..
[2] J. Verbaarschot. QCD, CHIRAL RANDOM MATRIX THEORYAND INTEGRABILITY , 2005, hep-th/0502029.
[3] J. Conrey,et al. Howe pairs, supersymmetry, and ratios of random characteristic polynomials for the unitary groups U(N) , 2005, math-ph/0511024.
[4] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[5] D. Bump,et al. On the Averages of Characteristic Polynomials From Classical Groups , 2005, math-ph/0502043.
[6] Peter J. Forrester,et al. Averages of ratios of characteristic polynomials for the compact classical groups , 2005 .
[7] A. Borodin,et al. Averages of characteristic polynomials in random matrix theory , 2004, math-ph/0407065.
[8] G. Akemann,et al. Ratios of characteristic polynomials in complex matrix models , 2004, math-ph/0404068.
[9] Persi Diaconis,et al. Random Matrices, Magic Squares and Matching Polynomials , 2004, Electron. J. Comb..
[10] J. Baik,et al. Products and ratios of characteristic polynomials of random Hermitian matrices , 2003, math-ph/0304016.
[11] G. Akemann,et al. Characteristic Polynomials of Complex Random Matrix Models , 2002, hep-th/0212051.
[12] Y. Fyodorov,et al. On the supersymmetric partition function in QCD-inspired random matrix models , 2002, cond-mat/0210647.
[13] T. Wettig,et al. Generalizations of some integrals over the unitary group , 2002, math-ph/0209030.
[14] J. P. Keating,et al. Autocorrelation of Random Matrix Polynomials , 2002, math-ph/0208007.
[15] Y. Fyodorov,et al. Random matrices close to Hermitian or unitary: overview of methods and results , 2002, nlin/0207051.
[16] Yan V. Fyodorov,et al. An exact formula for general spectral correlation function of random Hermitian matrices , 2002, math-ph/0204051.
[17] E. Strahov. Moments of Characteristic Polynomials Enumerate Two-Rowed Lexicographic Arrays , 2001, Electron. J. Comb..
[18] A. Orlov. New Solvable Matrix Integrals , 2002, nlin/0209063.
[19] Y. Fyodorov,et al. Characteristic polynomials of random Hermitian matrices and Duistermaat–Heckman localisation on non-compact Kähler manifolds , 2002, math-ph/0201045.
[20] Y. Fyodorov. Negative moments of characteristic polynomials of random matrices: Ingham–Siegel integral as an alternative to Hubbard–Stratonovich transformation , 2001, math-ph/0106006.
[21] A. Zee,et al. “Single ring theorem” and the disk-annulus phase transition , 2001, cond-mat/0104072.
[22] U. Haagerup,et al. Brown's Spectral Distribution Measure for R-Diagonal Elements in Finite von Neumann Algebras☆ , 2000 .
[23] N. Snaith,et al. Random Matrix Theory and ζ(1/2+it) , 2000 .
[24] Nina C Snaith,et al. Random Matrix Theory and L-Functions at s= 1/2 , 2000 .
[25] A. Balantekin. Character expansions, Itzykson-Zuber integrals, and the QCD partition function , 2000, hep-th/0007161.
[26] É. Brézin,et al. Characteristic Polynomials of Random Matrices , 1999, math-ph/9910005.
[27] P. Biane,et al. Computation of some examples of Brown's spectral measure in free probability , 1999, math/9912242.
[28] H. Sommers,et al. Truncations of random unitary matrices , 1999, chao-dyn/9910032.
[29] Y. Fyodorov,et al. SYSTEMATIC ANALYTICAL APPROACH TO CORRELATION FUNCTIONS OF RESONANCES IN QUANTUM CHAOTIC SCATTERING , 1999, cond-mat/9903043.
[30] Kevin W. J. Kadell. The Selberg–Jack Symmetric Functions , 1997 .
[31] A. Zee,et al. Non-gaussian non-hermitian random matrix theory: Phase transition and addition formalism , 1997, cond-mat/9704191.
[32] Y. Fyodorov,et al. Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time-reversal invariance , 1997 .
[33] J. Verbaarschot,et al. Fermion determinants in matrix models of QCD at nonzero chemical potential , 1997, hep-lat/9703006.
[34] A. Edelman. The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law , 1997 .
[35] M. Zirnbauer. Supersymmetry for systems with unitary disorder: circular ensembles , 1996, chao-dyn/9609007.
[36] Andreev,et al. Correlators of spectral determinants in quantum chaos. , 1995, Physical review letters.
[37] J. Verbaarschot,et al. Spectrum of the QCD Dirac operator and chiral random matrix theory. , 1994, Physical review letters.
[38] A. Edelman,et al. How many eigenvalues of a random matrix are real , 1994 .
[39] Jyoichi Kaneko,et al. Selberg integrals and hypergeometric functions associated with Jack polynomials , 1993 .
[40] J. Verbaarschot,et al. Random matrix theory and spectral sum rules for the Dirac operator in QCD , 1992, hep-th/9212088.
[41] H. Trotter. Eigenvalue distributions of large Hermitian matrices; Wigner's semi-circle law and a theorem of Kac, Murdock, and Szegö , 1984 .
[42] G. Pólya,et al. Problems and theorems in analysis , 1983 .
[43] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[44] R. W. Uphaus,et al. English Translation Theory. , 1977 .
[45] F. Berezin,et al. QUANTIZATION IN COMPLEX SYMMETRIC SPACES , 1975 .
[46] F. Berezin. Some remarks on the wigner distribution , 1973 .
[47] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[48] J. Ginibre. Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .
[49] L. Hua. Harmonic analysis of functions of several complex variables in the classical domains , 1963 .
[50] D. F. Hays,et al. Table of Integrals, Series, and Products , 1966 .