On Absolute Moments of Characteristic Polynomials of a Certain Class of Complex Random Matrices

[1]  G. Olshanski,et al.  Giambelli compatible point processes , 2005, Adv. Appl. Math..

[2]  J. Verbaarschot QCD, CHIRAL RANDOM MATRIX THEORYAND INTEGRABILITY , 2005, hep-th/0502029.

[3]  J. Conrey,et al.  Howe pairs, supersymmetry, and ratios of random characteristic polynomials for the unitary groups U(N) , 2005, math-ph/0511024.

[4]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[5]  D. Bump,et al.  On the Averages of Characteristic Polynomials From Classical Groups , 2005, math-ph/0502043.

[6]  Peter J. Forrester,et al.  Averages of ratios of characteristic polynomials for the compact classical groups , 2005 .

[7]  A. Borodin,et al.  Averages of characteristic polynomials in random matrix theory , 2004, math-ph/0407065.

[8]  G. Akemann,et al.  Ratios of characteristic polynomials in complex matrix models , 2004, math-ph/0404068.

[9]  Persi Diaconis,et al.  Random Matrices, Magic Squares and Matching Polynomials , 2004, Electron. J. Comb..

[10]  J. Baik,et al.  Products and ratios of characteristic polynomials of random Hermitian matrices , 2003, math-ph/0304016.

[11]  G. Akemann,et al.  Characteristic Polynomials of Complex Random Matrix Models , 2002, hep-th/0212051.

[12]  Y. Fyodorov,et al.  On the supersymmetric partition function in QCD-inspired random matrix models , 2002, cond-mat/0210647.

[13]  T. Wettig,et al.  Generalizations of some integrals over the unitary group , 2002, math-ph/0209030.

[14]  J. P. Keating,et al.  Autocorrelation of Random Matrix Polynomials , 2002, math-ph/0208007.

[15]  Y. Fyodorov,et al.  Random matrices close to Hermitian or unitary: overview of methods and results , 2002, nlin/0207051.

[16]  Yan V. Fyodorov,et al.  An exact formula for general spectral correlation function of random Hermitian matrices , 2002, math-ph/0204051.

[17]  E. Strahov Moments of Characteristic Polynomials Enumerate Two-Rowed Lexicographic Arrays , 2001, Electron. J. Comb..

[18]  A. Orlov New Solvable Matrix Integrals , 2002, nlin/0209063.

[19]  Y. Fyodorov,et al.  Characteristic polynomials of random Hermitian matrices and Duistermaat–Heckman localisation on non-compact Kähler manifolds , 2002, math-ph/0201045.

[20]  Y. Fyodorov Negative moments of characteristic polynomials of random matrices: Ingham–Siegel integral as an alternative to Hubbard–Stratonovich transformation , 2001, math-ph/0106006.

[21]  A. Zee,et al.  “Single ring theorem” and the disk-annulus phase transition , 2001, cond-mat/0104072.

[22]  U. Haagerup,et al.  Brown's Spectral Distribution Measure for R-Diagonal Elements in Finite von Neumann Algebras☆ , 2000 .

[23]  N. Snaith,et al.  Random Matrix Theory and ζ(1/2+it) , 2000 .

[24]  Nina C Snaith,et al.  Random Matrix Theory and L-Functions at s= 1/2 , 2000 .

[25]  A. Balantekin Character expansions, Itzykson-Zuber integrals, and the QCD partition function , 2000, hep-th/0007161.

[26]  É. Brézin,et al.  Characteristic Polynomials of Random Matrices , 1999, math-ph/9910005.

[27]  P. Biane,et al.  Computation of some examples of Brown's spectral measure in free probability , 1999, math/9912242.

[28]  H. Sommers,et al.  Truncations of random unitary matrices , 1999, chao-dyn/9910032.

[29]  Y. Fyodorov,et al.  SYSTEMATIC ANALYTICAL APPROACH TO CORRELATION FUNCTIONS OF RESONANCES IN QUANTUM CHAOTIC SCATTERING , 1999, cond-mat/9903043.

[30]  Kevin W. J. Kadell The Selberg–Jack Symmetric Functions , 1997 .

[31]  A. Zee,et al.  Non-gaussian non-hermitian random matrix theory: Phase transition and addition formalism , 1997, cond-mat/9704191.

[32]  Y. Fyodorov,et al.  Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time-reversal invariance , 1997 .

[33]  J. Verbaarschot,et al.  Fermion determinants in matrix models of QCD at nonzero chemical potential , 1997, hep-lat/9703006.

[34]  A. Edelman The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law , 1997 .

[35]  M. Zirnbauer Supersymmetry for systems with unitary disorder: circular ensembles , 1996, chao-dyn/9609007.

[36]  Andreev,et al.  Correlators of spectral determinants in quantum chaos. , 1995, Physical review letters.

[37]  J. Verbaarschot,et al.  Spectrum of the QCD Dirac operator and chiral random matrix theory. , 1994, Physical review letters.

[38]  A. Edelman,et al.  How many eigenvalues of a random matrix are real , 1994 .

[39]  Jyoichi Kaneko,et al.  Selberg integrals and hypergeometric functions associated with Jack polynomials , 1993 .

[40]  J. Verbaarschot,et al.  Random matrix theory and spectral sum rules for the Dirac operator in QCD , 1992, hep-th/9212088.

[41]  H. Trotter Eigenvalue distributions of large Hermitian matrices; Wigner's semi-circle law and a theorem of Kac, Murdock, and Szegö , 1984 .

[42]  G. Pólya,et al.  Problems and theorems in analysis , 1983 .

[43]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[44]  R. W. Uphaus,et al.  English Translation Theory. , 1977 .

[45]  F. Berezin,et al.  QUANTIZATION IN COMPLEX SYMMETRIC SPACES , 1975 .

[46]  F. Berezin Some remarks on the wigner distribution , 1973 .

[47]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[48]  J. Ginibre Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .

[49]  L. Hua Harmonic analysis of functions of several complex variables in the classical domains , 1963 .

[50]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .