Nonnucleoside Inhibitor Binding Affects the Interactions of the Fingers Subdomain of Human Immunodeficiency Virus Type 1 Reverse Transcriptase with DNA

ABSTRACT Site-directed photoaffinity cross-linking experiments were performed by using human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) mutants with unique cysteine residues at several positions (i.e., positions 65, 67, 70, and 74) in the fingers subdomain of the p66 subunit. Since neither the introduction of the unique cysteine residues into the fingers nor the modification of the SH groups of these residues with photoaffinity cross-linking reagents caused a significant decrease in the enzymatic activities of RT, we were able to use this system to measure distances between specific positions in the fingers domain of RT and double-stranded DNA. HIV-1 RT is quite flexible. There are conformational changes associated with binding of the normal substrates and nonnucleoside RT inhibitors (NNRTIs). Cross-linking was used to monitor intramolecular movements associated with binding of an NNRTI either in the presence or in the absence of an incoming deoxynucleoside triphosphate (dNTP). Binding an incoming dNTP at the polymerase active site decreased the efficiency of cross-linking but caused only modest changes in the preferred positions of cross-linking. This finding suggests that the fingers of p66 are closer to an extended template in the “open” configuration of the enzyme with the fingers away from the active site than in the closed configuration with the fingers in direct contact with the incoming dNTP. NNRTI binding caused increased cross-linking in experiments with diazirine reagents (especially with a diazirine reagent with a longer linker) and a moderate shift in the preferred sites of interaction with the template. Cross-linking occurred closer to the polymerase active site for RTs modified at positions 70 and 74. The effects of NNRTI binding were more pronounced in the absence of a bound dNTP; pretreatment of HIV-1 RT with an NNRTI reduced the effect of dNTP binding. These observations can be explained if the binding of NNRTI causes a decrease in the flexibility in the fingers subdomain of RT-NNRTI complex and a decrease in the distance from the fingers to the template extension.

[1]  S. Sharma,et al.  Nucleotide-induced stable complex formation by HIV-1 reverse transcriptase. , 1997, Biochemistry.

[2]  S. Drake NNRTIs-a new class of drugs for HIV. , 2000, The Journal of antimicrobial chemotherapy.

[3]  Richard T. Walker,et al.  Complexes of HIV-1 reverse transcriptase with inhibitors of the HEPT series reveal conformational changes relevant to the design of potent non-nucleoside inhibitors. , 1996, Journal of medicinal chemistry.

[4]  Henri Moereels,et al.  Structure of HIV-1 RT/TIBO R 86183 complex reveals similarity in the binding of diverse nonnucleoside inhibitors , 1995, Nature Structural Biology.

[5]  A. Telesnitsky,et al.  Footprint analysis of replicating murine leukemia virus reverse transcriptase. , 1995, Science.

[6]  D W Rodgers,et al.  The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Jianping Ding,et al.  Locations of anti-AIDS drug binding sites and resistance mutations in the three-dimensional structure of HIV-1 reverse transcriptase. Implications for mechanisms of drug inhibition and resistance. , 1994, Journal of molecular biology.

[8]  A. D. Clark,et al.  Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody Fab fragment at 2.8 A resolution. , 1998, Journal of molecular biology.

[9]  A. D. Clark,et al.  Crystal structures of 8-Cl and 9-Cl TIBO complexed with wild-type HIV-1 RT and 8-Cl TIBO complexed with the Tyr181Cys HIV-1 RT drug-resistant mutant. , 1996, Journal of molecular biology.

[10]  P. Boyer,et al.  Cross-Linking of the Fingers Subdomain of Human Immunodeficiency Virus Type 1 Reverse Transcriptase to Template-Primer , 2001, Journal of Virology.

[11]  M L Lamb,et al.  Monte Carlo calculations on HIV-1 reverse transcriptase complexed with the non-nucleoside inhibitor 8-Cl TIBO: contribution of the L100I and Y181C variants to protein stability and biological activity. , 2000, Protein engineering.

[12]  A. D. Clark,et al.  Crystal structure of HIV‐1 reverse transcriptase in complex with a polypurine tract RNA:DNA , 2001, The EMBO journal.

[13]  P. Boyer,et al.  Subunit specificity of mutations that confer resistance to nonnucleoside inhibitors in human immunodeficiency virus type 1 reverse transcriptase , 1994, Antimicrobial Agents and Chemotherapy.

[14]  D. Stuart,et al.  The structure of HIV-1 reverse transcriptase complexed with 9-chloro-TIBO: lessons for inhibitor design. , 1995, Structure.

[15]  D I Stuart,et al.  Crystallographic analysis of the binding modes of thiazoloisoindolinone non-nucleoside inhibitors to HIV-1 reverse transcriptase and comparison with modeling studies. , 1999, Journal of medicinal chemistry.

[16]  E. Pedersen,et al.  Non-Nucleoside Reverse Transcriptase Inhibitors: The NNRTI Boom , 1999, Antiviral chemistry & chemotherapy.

[17]  D I Stuart,et al.  Crystal structures of HIV-1 reverse transcriptase in complex with carboxanilide derivatives. , 1998, Biochemistry.

[18]  P. Boyer,et al.  Cassette mutagenesis of the reverse transcriptase of human immunodeficiency virus type 1 , 1992, Journal of virology.

[19]  T. Quinn,et al.  Genomic heterogeneity of AIDS retroviral isolates from North America and Zaire. , 1985, Science.

[20]  T. Steitz,et al.  The structure of HIV‐1 reverse transcriptase complexed with an RNA pseudoknot inhibitor , 1998, The EMBO journal.

[21]  R. Goody,et al.  Human immunodeficiency virus reverse transcriptase substrate-induced conformational changes and the mechanism of inhibition by nonnucleoside inhibitors. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[22]  P. Boyer,et al.  Sensitivity of wild-type human immunodeficiency virus type 1 reverse transcriptase to dideoxynucleotides depends on template length; the sensitivity of drug-resistant mutants does not. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[23]  T. Steitz,et al.  Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. , 1992, Science.

[24]  G. Maga,et al.  Selective Interaction of the Human Immunodeficiency Virus Type 1 Reverse Transcriptase Nonnucleoside Inhibitor Efavirenz and Its Thio-Substituted Analog with Different Enzyme-Substrate Complexes , 2000, Antimicrobial Agents and Chemotherapy.

[25]  Yvonne Jones,et al.  High resolution structures of HIV-1 RT from four RT–inhibitor complexes , 1995, Nature Structural Biology.

[26]  T. Steitz,et al.  Structure of the binding site for nonnucleoside inhibitors of the reverse transcriptase of human immunodeficiency virus type 1. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[27]  D. Stuart,et al.  Continuous and discontinuous changes in the unit cell of HIV-1 reverse transcriptase crystals on dehydration. , 1998, Acta crystallographica. Section D, Biological crystallography.

[28]  G L Verdine,et al.  Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. , 1998, Science.

[29]  A. D. Clark,et al.  Structure of unliganded HIV-1 reverse transcriptase at 2.7 A resolution: implications of conformational changes for polymerization and inhibition mechanisms. , 1996, Structure.

[30]  A. D. Clark,et al.  Structures of Tyr188Leu mutant and wild-type HIV-1 reverse transcriptase complexed with the non-nucleoside inhibitor HBY 097: inhibitor flexibility is a useful design feature for reducing drug resistance. , 1998, Journal of molecular biology.

[31]  J. Chou,et al.  Kinetic studies with the non-nucleoside human immunodeficiency virus type-1 reverse transcriptase inhibitor U-90152E. , 1994, Biochemical pharmacology.

[32]  D I Stuart,et al.  Unique features in the structure of the complex between HIV-1 reverse transcriptase and the bis(heteroaryl)piperazine (BHAP) U-90152 explain resistance mutations for this nonnucleoside inhibitor. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[33]  D I Stuart,et al.  Binding of the Second Generation Non-nucleoside Inhibitor S-1153 to HIV-1 Reverse Transcriptase Involves Extensive Main Chain Hydrogen Bonding* , 2000, The Journal of Biological Chemistry.

[34]  Jianping Ding,et al.  Molecular modeling studies of HIV‐1 reverse transcriptase nonnucleoside inhibitors: Total energy of complexation as a predictor of drug placement and activity , 1995, Protein science : a publication of the Protein Society.

[35]  S. Harrison,et al.  Trapping of a catalytic HIV reverse transcriptase*template:primer complex through a disulfide bond. , 2000, Chemistry & biology.

[36]  S. Sarafianos,et al.  Touching the heart of HIV-1 drug resistance: the fingers close down on the dNTP at the polymerase active site. , 1999, Chemistry & biology.

[37]  K A Johnson,et al.  Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors , 1995, Science.

[38]  A. D. Clark,et al.  Crystals of a ternary complex of human immunodeficiency virus type 1 reverse transcriptase with a monoclonal antibody Fab fragment and double-stranded DNA diffract x-rays to 3.5-A resolution. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Jianping Ding,et al.  Protein-nucleic acid interactions and DNA conformation in a complex of human immunodeficiency virus type 1 reverse transcriptase with a double-stranded DNA template-primer. , 1997, Biopolymers.

[40]  S. Sarafianos,et al.  Similarities and differences in the RNase H activities of human immunodeficiency virus type 1 reverse transcriptase and Moloney murine leukemia virus reverse transcriptase. , 1999, Journal of molecular biology.

[41]  D I Stuart,et al.  Design of MKC-442 (emivirine) analogues with improved activity against drug-resistant HIV mutants. , 1999, Journal of medicinal chemistry.

[42]  A. D. Clark,et al.  Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.