Effect of molecular energy content on the dissociative chemisorption of N2 on Re(0001)

[1]  G. D. Billing,et al.  Dissociative chemisorption of N2 on rhenium: Dynamics at low impact energies , 1990 .

[2]  J. Harris,et al.  Recoil effects in surface dissociation , 1990 .

[3]  G. D. Billing,et al.  Dissociative chemisorption of N2 on rhenium: Dynamics at high impact energies , 1990 .

[4]  R. Kosloff,et al.  Tunneling mechanism for the dissociative chemisorption of N2 on metal surfaces , 1990 .

[5]  R. Kosloff,et al.  The dissociative chemisorption dynamics of N2 on catalytic metal surfaces: A quantum‐mechanical tunneling mechanism , 1989 .

[6]  P. Houston,et al.  Gas-surface interactions with vibrationally excited molecules , 1988 .

[7]  S. Ceyer Dissociative Chemisorption: Dynamics and Mechanisms , 1988 .

[8]  Stein,et al.  Effect of translational energy on the chemisorption of N2 on Fe(111): Activated dissociation via a precursor state. , 1987, Physical review letters.

[9]  M. Asscher,et al.  Interaction of N2 with Re(1120) in the presence of H2 , 1987 .

[10]  M. Grunze,et al.  Precursor mediated and direct adsorption of molecular nitrogen on Fe{111} , 1987 .

[11]  C. Rettner,et al.  Effect of vibrational energy on the dissociative chemisorption of N2 on Fe(111) , 1987 .

[12]  M. Asscher,et al.  Adsorption and dissociation of N2 on rhenium single crystal surfaces , 1987 .

[13]  C. Rettner,et al.  Dynamics of the activated dissociative chemisorption of N2 on W(110): a molecular beam study , 1986 .

[14]  J. Misewich,et al.  NO(ν = 1) scattering from Ag(111) , 1986 .

[15]  C. Rettner,et al.  On the role of vibrational energy in the activated dissociative chemisorption of methane on tungsten and rhodium , 1986 .

[16]  G. Somorjai,et al.  The ammonia synthesis over rhenium single-crystal catalysts: Kinetics, structure sensitivity, and effect of potassium and oxygen , 1986 .

[17]  A. Hamza,et al.  Dynamics of the dissociative adsorption of CO2 on Ni(100) , 1986 .

[18]  M. Grunze,et al.  π-bonded N2 on Fe(111): The precursor of dissociation , 1984 .

[19]  D. Auerbach,et al.  Molecular beam studies of the dynamics of activated adsorption of N2 on W(110): Dissociation threshold and new binding states , 1984 .

[20]  K. Tang,et al.  An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients , 1984 .

[21]  M. Grunze,et al.  A search for precursor states to molecular nitrogen chemisorption on Ni(100), Re(0001) and W(100) surfaces at ~20 K , 1984 .

[22]  Nicholas D. Spencer,et al.  Iron single crystals as ammonia synthesis catalysts: Effect of surface structure on catalyst activity , 1982 .

[23]  L. Kleinman,et al.  Coherent dynamics of multilevel systems , 1980 .

[24]  M. Grunze,et al.  Chemisorption of N2 on an Fe(100) surface , 1976 .

[25]  R. Jaffee,et al.  The Physical Basis for Heterogeneous Catalysis , 1975 .

[26]  M. Balooch,et al.  Molecular beam study of the apparent activation barrier associated with adsorption and desorption of hydrogen on copper , 1974 .