Assessing visual field clustering schemes using machine learning classifiers in standard perimetry.

PURPOSE To compare machine learning classifiers trained on three clustering schemes to determine whether distinguishing healthy eyes from those with glaucomatous optic neuropathy (GON) can be optimized by training with clustered data. METHODS Two machine learning classifiers-quadratic discriminant analysis (QDA) and support vector machines with Gaussian kernel (SVMg)-were trained separately using standard perimetry data from the Diagnostic Innovations in Glaucoma Study (DIGS), clustered using three clustering schemes on a training data set (123 eyes/123 glaucoma patients with GON; 135 eyes/135 normal control subjects). Trained classifiers were then applied to an independent data set containing 69 eyes of 69 glaucoma patients with early visual field loss and 83 eyes of 83 normal control subjects. Two control conditions were included: unclustered data and a random assignment of locations to clusters. RESULTS Areas under the receiver operating characteristic (ROC) curve ranged from 0.85 (SVMg, thresholds clustered by Glaucoma Hemifield Test sectors) to 0.92 (QDA, thresholds clustered by Garway-Heath mapping) for the training data set. Use of clustered data showed no significant optimization of sensitivity over use of unclustered data, and no single clustering method resulted in significantly higher performance in the independent data set. Sensitivities tended to be higher with QDA than with SVMg, regardless of specificity cutoff and clustering METHOD CONCLUSIONS QDA performed better with the early glaucoma data set than did the SVMg. Clustering may be advantageous when data-dimension reduction is needed-for example, when combining field results with other high-dimensional data (e.g., structural imaging data)-but it is not necessary for visual field data alone.

[1]  Malcolm I. Heywood,et al.  Diagnostic Support for Glaucoma Using Retinal Images: A Hybrid Image Analysis and Data Mining Approach , 2005, MIE.

[2]  Yasuo Ohashi,et al.  Sectorization of the Central 30° Visual Field in Glaucoma , 1993 .

[3]  D. Garway-Heath,et al.  Mapping the visual field to the optic disc in normal tension glaucoma eyes. , 2000, Ophthalmology.

[4]  Susan E. George,et al.  Artificial neural network analysis of noisy visual field data in glaucoma , 1997, Artif. Intell. Medicine.

[5]  Harris Drucker,et al.  Learning algorithms for classification: A comparison on handwritten digit recognition , 1995 .

[6]  R L Yolton,et al.  Demonstration of a neural network expert system for recognition of glaucomatous visual field changes. , 1994, Military medicine.

[7]  David Keating,et al.  Visual field interpretation with a personal computer based neural network , 1994, Eye.

[8]  D B Henson,et al.  Visual field analysis using artificial neural networks , 1994, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[9]  G. Holder,et al.  Relationship between electrophysiological, psychophysical, and anatomical measurements in glaucoma. , 2002, Investigative ophthalmology & visual science.

[10]  Ian H. Witten,et al.  Determining Progression in Glaucoma Using Visual Fields , 2001, PAKDD.

[11]  Douglas R. Anderson Automated Static Perimetry , 1992 .

[12]  J Yamagami,et al.  Mathematical and Optimal Clustering of Test Points of the Central 30-Degree Visual Field of Glaucoma , 2001, Journal of glaucoma.

[13]  Robert N Weinreb,et al.  Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields. , 2002, Investigative ophthalmology & visual science.

[14]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[15]  C. Bunce,et al.  The ability of the GDx Nerve Fibre Analyser neural network to diagnose glaucoma , 2001, Graefe's Archive for Clinical and Experimental Ophthalmology.

[16]  Shi Bing,et al.  Inductive learning algorithms and representations for text categorization , 2006 .

[17]  Anders Heijl,et al.  Effects of input data on the performance of a neural network in distinguishing normal and glaucomatous visual fields. , 2005, Investigative ophthalmology & visual science.

[18]  P A Sample,et al.  Mapping structural to functional damage in glaucoma with standard automated perimetry and confocal scanning laser ophthalmoscopy. , 1998, American journal of ophthalmology.

[19]  P A Sample,et al.  Spatial relationship of motion automated perimetry and optic disc topography in patients with glaucomatous optic neuropathy. , 1999, Journal of glaucoma.

[20]  B R Younge,et al.  Glaucoma visual field analysis by computed profile of nerve fiber function in optic disc sectors. , 1982, Ophthalmology.

[21]  Robert N Weinreb,et al.  Confocal scanning laser ophthalmoscopy classifiers and stereophotograph evaluation for prediction of visual field abnormalities in glaucoma-suspect eyes. , 2004, Investigative ophthalmology & visual science.

[22]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[23]  L Brigatti,et al.  Neural networks to identify glaucoma with structural and functional measurements. , 1996, American journal of ophthalmology.

[24]  A Heijl,et al.  Glaucoma Hemifield Test. Automated visual field evaluation. , 1992, Archives of ophthalmology.

[25]  Robert N Weinreb,et al.  Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry. , 2002, Investigative ophthalmology & visual science.

[26]  F Dannheim,et al.  The topographical relationship between optic disc and visual field in glaucoma , 1990, Acta ophthalmologica.

[27]  T. Sejnowski,et al.  Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements. , 2005, Investigative ophthalmology & visual science.

[28]  J Katz,et al.  Neural networks for visual field analysis: how do they compare with other algorithms? , 1999, Journal of glaucoma.

[29]  M H Goldbaum,et al.  Interpretation of automated perimetry for glaucoma by neural network. , 1994, Investigative ophthalmology & visual science.

[30]  Robert N Weinreb,et al.  Using unsupervised learning with variational bayesian mixture of factor analysis to identify patterns of glaucomatous visual field defects. , 2004, Investigative ophthalmology & visual science.

[31]  D B Henson,et al.  Spatial classification of glaucomatous visual field loss. , 1996, The British journal of ophthalmology.

[32]  Robert N Weinreb,et al.  Retinal nerve fiber layer thickness measured with optical coherence tomography is related to visual function in glaucomatous eyes. , 2003, Ophthalmology.

[33]  Douglas Hoffman,et al.  Neural networks to identify glaucomatous visual field progression. , 2003, American journal of ophthalmology.

[34]  M Araie,et al.  Sectorization of the central 30 degrees visual field in glaucoma. , 1993, Ophthalmology.

[35]  L Brigatti,et al.  Automatic detection of glaucomatous visual field progression with neural networks. , 1997, Archives of ophthalmology.

[36]  L. Zangwill,et al.  Association between quantitative nerve fiber layer measurement and visual field loss in glaucoma. , 1995, American journal of ophthalmology.

[37]  T Zeyen,et al.  An evaluation of clusters in the glaucomatous visual field. , 1993, American journal of ophthalmology.

[38]  V. Vapnik,et al.  Bounds on Error Expectation for Support Vector Machines , 2000, Neural Computation.

[39]  Bernard F. Buxton,et al.  Drug Design by Machine Learning: Support Vector Machines for Pharmaceutical Data Analysis , 2001, Comput. Chem..

[40]  A. Heijl,et al.  Evaluation of methods for automated Hemifield analysis in perimetry. , 1992, Archives of ophthalmology.

[41]  C. Glymour,et al.  Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study. , 2005, Investigative ophthalmology & visual science.

[42]  Robert N Weinreb,et al.  Using unsupervised learning with independent component analysis to identify patterns of glaucomatous visual field defects. , 2005, Investigative ophthalmology & visual science.

[43]  Terrence J. Sejnowski,et al.  Comparison of machine learning and traditional classifiers in glaucoma diagnosis , 2002, IEEE Transactions on Biomedical Engineering.

[44]  T. Sejnowski,et al.  Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers. , 2004, Investigative ophthalmology & visual science.

[45]  Robert N Weinreb,et al.  Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc. , 2002, Investigative ophthalmology & visual science.

[46]  Xiaohui Liu,et al.  A spatio-temporal Bayesian network classifier for understanding visual field deterioration , 2005, Artif. Intell. Medicine.

[47]  William Nick Street,et al.  Breast Cancer Diagnosis and Prognosis Via Linear Programming , 1995, Oper. Res..

[48]  L. Zangwill,et al.  Mapping structural damage of the optic disk to visual field defect in glaucoma. , 1997, American journal of ophthalmology.

[49]  J. Weber,et al.  A perimetric nerve fiber bundle map , 1991, International Ophthalmology.

[50]  Mei-Ling Huang,et al.  Development and comparison of automated classifiers for glaucoma diagnosis using Stratus optical coherence tomography. , 2005, Investigative ophthalmology & visual science.

[51]  T. Sejnowski,et al.  Unsupervised machine learning with independent component analysis to identify areas of progression in glaucomatous visual fields. , 2005, Investigative ophthalmology & visual science.