B cell homeostasis and follicle confines are governed by fibroblastic reticular cells

[1]  S. Wienert,et al.  Fate mapping reveals origin and dynamics of lymph node follicular dendritic cells , 2014, The Journal of experimental medicine.

[2]  F. Tacchini-Cottier,et al.  Trapping of naive lymphocytes triggers rapid growth and remodeling of the fibroblast network in reactive murine lymph nodes , 2013, Proceedings of the National Academy of Sciences.

[3]  Alberto Martin,et al.  AID-Expressing Germinal Center B Cells Cluster Normally within Lymph Node Follicles in the Absence of FDC-M1+ CD35+ Follicular Dendritic Cells but Dissipate Prematurely , 2013, The Journal of Immunology.

[4]  Thomas Rülicke,et al.  Maturation of Lymph Node Fibroblastic Reticular Cells from Myofibroblastic Precursors Is Critical for Antiviral Immunity , 2013, Immunity.

[5]  S. Turley,et al.  Stromal and hematopoietic cells in secondary lymphoid organs: partners in immunity , 2013, Immunological reviews.

[6]  S. Turley,et al.  Podoplanin: emerging functions in development, the immune system, and cancer , 2012, Front. Immun..

[7]  V. Kuchroo,et al.  Podoplanin-Rich Stromal Networks Induce Dendritic Cell Motility via Activation of the C-type Lectin Receptor CLEC-2 , 2012, Immunity.

[8]  T. Katakai Marginal reticular cells: a stromal subset directly descended from the lymphoid tissue organizer , 2012, Front. Immun..

[9]  R. Mebius,et al.  Interdependence of stromal and immune cells for lymph node function. , 2012, Trends in immunology.

[10]  D. Mooney,et al.  Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks , 2012, Nature Immunology.

[11]  J. Cyster,et al.  Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers , 2011, The Journal of experimental medicine.

[12]  Limin Liu,et al.  Regulation of T Cell Priming by Lymphoid Stroma , 2011, PloS one.

[13]  P. Nelson,et al.  Fibroblastic Reticular Cells From Lymph Nodes Attenuate T Cell Expansion by Producing Nitric Oxide , 2011, PloS one.

[14]  Kutlu G. Elpek,et al.  Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes , 2011, Nature Immunology.

[15]  S. Turley,et al.  Reproducible Isolation of Lymph Node Stromal Cells Reveals Site-Dependent Differences in Fibroblastic Reticular Cells , 2011, Front. Immun..

[16]  S. Degn,et al.  Trafficking of B cell antigen in lymph nodes. , 2011, Annual review of immunology.

[17]  Kutlu G. Elpek,et al.  The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs , 2010, Nature Reviews Immunology.

[18]  J. Cyster B cell follicles and antigen encounters of the third kind , 2010, Nature Immunology.

[19]  D. Speiser,et al.  Dendritic Cell-Specific Antigen Delivery by Coronavirus Vaccine Vectors Induces Long-Lasting Protective Antiviral and Antitumor Immunity , 2010, mBio.

[20]  K. Toellner,et al.  Toll-like receptor 4 signaling by follicular dendritic cells is pivotal for germinal center onset and affinity maturation. , 2010, Immunity.

[21]  Siamon Gordon,et al.  Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes , 2010, Nature Immunology.

[22]  R. Germain,et al.  B-cell follicle development remodels the conduit system and allows soluble antigen delivery to follicular dendritic cells. , 2009, Blood.

[23]  Scott N. Mueller,et al.  Stromal cell contributions to the homeostasis and functionality of the immune system , 2009, Nature Reviews Immunology.

[24]  U. V. von Andrian,et al.  Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. , 2009, Immunity.

[25]  K. Katagiri,et al.  Organizer-Like Reticular Stromal Cell Layer Common to Adult Secondary Lymphoid Organs1 , 2008, The Journal of Immunology.

[26]  Burkhard Ludewig,et al.  Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence , 2008, Nature Reviews Immunology.

[27]  E. Ekland,et al.  Fibroblast-Type Reticular Stromal Cells Regulate the Lymph Node Vasculature1 , 2008, The Journal of Immunology.

[28]  T. Junt,et al.  Restoration of lymphoid organ integrity through the interaction of lymphoid tissue–inducer cells with stroma of the T cell zone , 2008, Nature Immunology.

[29]  R. Roozendaal,et al.  Complement receptors CD21 and CD35 in humoral immunity , 2007, Immunological reviews.

[30]  B. Hinz,et al.  Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells , 2007, Nature Immunology.

[31]  S. Perrin,et al.  Lymphotoxin-β Receptor Signaling Is Required for the Homeostatic Control of HEV Differentiation and Function , 2005 .

[32]  Steffen Jung,et al.  A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration , 2005, Nature Methods.

[33]  M. Scott,et al.  Normal B Cell Homeostasis Requires B Cell Activation Factor Production by Radiation-resistant Cells , 2003, The Journal of experimental medicine.

[34]  R. Mebius Organogenesis of lymphoid tissues , 2003, Nature reviews. Immunology.

[35]  F. Mackay,et al.  BAFF: A fundamental survival factor for B cells , 2002, Nature Reviews Immunology.

[36]  J. Cyster,et al.  Chemokine Requirements for B Cell Entry to Lymph Nodes and Peyer's Patches , 2002, The Journal of experimental medicine.

[37]  Stephen Shaw,et al.  Lymph-Borne Chemokines and Other Low Molecular Weight Molecules Reach High Endothelial Venules via Specialized Conduits While a Functional Barrier Limits Access to the Lymphocyte Microenvironments in Lymph Node Cortex , 2000, The Journal of experimental medicine.

[38]  J. Cyster,et al.  Follicular stromal cells and lymphocyte homing to follicles , 2000, Immunological reviews.

[39]  J. Tschopp,et al.  Mice Transgenic for Baff Develop Lymphocytic Disorders along with Autoimmune Manifestations , 1999, The Journal of experimental medicine.

[40]  K. Rajewsky,et al.  Abnormal development of secondary lymphoid tissues in lymphotoxin beta-deficient mice. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[41]  R. Flavell,et al.  Distinct Roles in Lymphoid Organogenesis for Lymphotoxins α and β Revealed in Lymphotoxin β–Deficient Mice , 1997 .

[42]  G. F. Burton,et al.  Follicular Dendritic Cells as Accessory Cells , 1990, Immunological reviews.

[43]  Jovana Cupovic Low avidity CD8+ T cells in viral infection: from neuroinflammation to adoptive T cell therapy , 2014 .

[44]  S. Perrin,et al.  Lymphotoxin-beta receptor signaling is required for the homeostatic control of HEV differentiation and function. , 2005, Immunity.

[45]  Michael Sixt,et al.  The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. , 2005, Immunity.

[46]  R. Flavell,et al.  Distinct roles in lymphoid organogenesis for lymphotoxins alpha and beta revealed in lymphotoxin beta-deficient mice. , 1997, Immunity.