A new proof that the product of three or more exponential random variables is moment-indeterminate

[1]  J. Shohat,et al.  The problem of moments , 1943 .

[2]  M. Springer,et al.  The Distribution of Products of Independent Random Variables , 1966 .

[3]  N. Akhiezer,et al.  The Classical Moment Problem. , 1968 .

[4]  L. Bondesson On the infinite divisibility of products of powers of gamma variables , 1979 .

[5]  H. J. Malik,et al.  Probability Density Function of the Product and Quotient of Two Correlated Exponential Random Variables , 1986, Canadian Mathematical Bulletin.

[6]  Jordan Stoyanov,et al.  Counterexamples in Probability , 1988 .

[7]  Eric V. Slud,et al.  The Moment Problem for Polynomial Forms in Normal Random Variables , 1993 .

[8]  Christian Berg,et al.  Indeterminate moment problems and the theory of entire functions , 1995 .

[9]  Gwo Dong Lin,et al.  On the moment problems , 1997 .

[10]  Henrik L. Pedersen On Krein's Theorem for Indeterminacy of the Classical Moment Problem , 1998 .

[11]  Jordan Stoyanov,et al.  Krein condition in probabilistic moment problems , 2000 .

[12]  Jong-Wuu Wu,et al.  Criteria for the Unique Determination of Probability Distributions by Moments , 2001 .

[13]  G. D. Lin,et al.  On the moment determinacy of the distributions of compound geometric sums , 2002, Journal of Applied Probability.

[14]  H. Rubin,et al.  A contemporary review and bibliography of infinitely divisible distributions and processes , 2002 .

[15]  J. Galambos,et al.  Products of Random Variables: Applications to Problems of Physics and to Arithmetical Functions , 2004 .

[16]  S. Ostrovska Uncorrelatedness sets for random variables with given distributions , 2004 .

[17]  Jordan Stoyanov,et al.  Stieltjes classes for moment-indeterminate probability distributions , 2004, Journal of Applied Probability.

[18]  Sofiya Ostrovska,et al.  Stieltjes classes for M-indeterminate powers of inverse Gaussian distributions , 2005 .

[19]  Christian Berg,et al.  On Powers of Stieltjes Moment Sequences, I , 2005 .

[20]  Gérard Duchamp,et al.  On certain non-unique solutions of the Stieltjes moment problem , 2009, Discret. Math. Theor. Comput. Sci..