Gravity Wave Influences in the Thermosphere and Ionosphere: Observations and Recent Modeling

Observational and theoretical studies have suggested gravity wave propagation and influences in the thermosphere and ionosphere for half a century. Gravity waves contribute, or are believed to contribute, to a variety of neutral and electrodynamic phenomena ranging from vertical coupling, energy and momentum transport and deposition, neutral perturbations and accelerations, traveling ionospheric disturbances, ionospheric irregularities, and plasma instabilities under quiet conditions to strong coupling from high to low latitudes and accompanying electrodynamics under storm-time conditions. Our goals here are to briefly review what has been learned to date, to illustrate some of the more recent results indicative of gravity wave effects, and to identify some aspects of neutral dynamics not previously considered that we expect may also have significant influences on neutral dynamics and electrodynamics in the thermosphere and ionosphere.

[1]  S. Vadas,et al.  Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity , 2005 .

[2]  Takuji Nakamura,et al.  Convectively generated mesoscale gravity waves simulated throughout the middle atmosphere , 2002 .

[3]  M. Nicolls,et al.  Using PFISR measurements and gravity wave dissipative theory to determine the neutral, background thermospheric winds , 2008 .

[4]  M. McIntyre Mean motions and impulse of a guided internal gravity wave packet , 1973, Journal of Fluid Mechanics.

[5]  Akinori Saito,et al.  A large‐scale traveling ionospheric disturbance during the magnetic storm of 15 September 1999 , 2002 .

[6]  R. Mied The occurrence of parametric instabilities in finite-amplitude internal gravity waves , 1976, Journal of Fluid Mechanics.

[7]  S. Vadas,et al.  Reconstruction of the gravity wave field from convective plumes via ray tracing , 2009 .

[8]  F. Kamalabadi,et al.  Estimation of electron densities in the lower thermosphere from GUVI 135.6 nm tomographic inversions in support of SpreadFEx , 2009 .

[9]  M. Alexander,et al.  Incorporation of a gravity wave momentum deposition parameterization into the Venus Thermosphere General Circulation Model (VTGCM) , 2012 .

[10]  M. Lighthill,et al.  Waves In Fluids , 2002 .

[11]  S. Vadas,et al.  An estimate of strong local body forcing and gravity wave radiation based on OH airglow and meteor radar observations , 2002 .

[12]  D. Fritts,et al.  Gravity wave breaking in two and three dimensions: 2. Three‐dimensional evolution and instability structure , 1994 .

[13]  Michael C. Kelley,et al.  Imaging the structure of a large‐scale TID using ISR and TEC data , 2004 .

[14]  M. Kelley,et al.  Nonlinear evolution of equatorial spread F: 2. Gravity wave seeding of Rayleigh‐Taylor instability , 1996 .

[15]  J. Hoffman,et al.  Plasma bubbles and irregularities in the equatorial ionosphere , 1977 .

[16]  M. Hickey,et al.  A quartic dispersion equation for internal gravity waves in the thermosphere , 1987 .

[17]  David L. Hysell,et al.  Equatorial spread-F initiation: Post-sunset vortex, thermospheric winds, gravity waves , 2007 .

[18]  T. Lund,et al.  Gravity Wave Instability Dynamics at High Reynolds Numbers. Part II: Turbulence Evolution, Structure, and Anisotropy , 2009 .

[19]  S. Vadas,et al.  Satellite‐based measurements of gravity wave‐induced midlatitude plasma density perturbations , 2008 .

[20]  J. H. Elder,et al.  High‐resolution studies of atmosphere‐ionosphere coupling at Arecibo Observatory, Puerto Rico , 1997 .

[21]  Timothy Fuller-Rowell,et al.  Storm-time changes in the upper atmosphere at low latitudes , 2002 .

[22]  K. Hocke,et al.  Gravity waves determined by modeling of traveling ionospheric disturbances in incoherent‐scatter radar measurements , 1995 .

[23]  A. Manson,et al.  Seasonal variation of the turbopause: One year of turbulence investigation at 69°N by the joint University of Tromsø/University of Saskatchewan MF radar , 1998 .

[24]  E. Dewan,et al.  Simultaneous Observations of Mesospheric Gravity Waves and Sprites Generated by a Midwestern Thunderstorm , 2003 .

[25]  M. Alexander,et al.  Gravity wave dynamics and effects in the middle atmosphere , 2003 .

[26]  K. Hocke,et al.  A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982-1995 , 1996 .

[27]  B. Sutherland Finite-amplitude internal wavepacket dispersion and breaking , 2001, Journal of Fluid Mechanics.

[28]  J. Klostermeyer NUMERICAL CALCULATION OF GRAVITY WAVE PROPAGATION IN A REALISTIC THERMOSPHERE. , 1972 .

[29]  Thomas Dautermann,et al.  Overview and summary of the Spread F Experiment (SpreadFEx) , 2009 .

[30]  F. Yi,et al.  Gravity wave excitation through resonant interaction in a compressible atmosphere , 2009 .

[31]  K. Yeh,et al.  The instability of atmospheric gravity waves through wave‐wave interactions , 1981 .

[32]  S. Vadas,et al.  The importance of spatial variability in the generation of secondary gravity waves from local body forces , 2002 .

[33]  J. Klostermeyer Two- and three-dimensional parametric instabilites in finite-amplitude internal gravity waves , 1991 .

[34]  R. Woodman,et al.  Seeding and layering of equatorial spread F by gravity waves , 1990 .

[35]  M. Conde,et al.  Characterization of acoustic–gravity waves in the upper thermosphere using Dynamics Explorer 2 Wind and Temperature Spectrometer (WATS) and Neutral Atmosphere Composition Spectrometer (NACS) data , 2002 .

[36]  M. Hickey,et al.  A numerical model for gravity wave dissipation in the thermosphere , 1988 .

[37]  T. Lund,et al.  Gravity Wave Instability Dynamics at High Reynolds Numbers. Part I: Wave Field Evolution at Large Amplitudes and High Frequencies , 2009 .

[38]  T. Horinouchi Simulated breaking of convectively generated mesoscale gravity waves and airglow modulation , 2004 .

[39]  David L. Hysell,et al.  Nonlinear Rayleigh-Taylor instabilities, atmospheric gravity waves and equatorial spread F , 1993 .

[40]  Timothy Fuller-Rowell,et al.  Response of the thermosphere and ionosphere to geomagnetic storms , 1994 .

[41]  R. Walterscheid,et al.  A continuum of gravity waves in the Arecibo thermosphere? , 2003 .

[42]  S. Fukao,et al.  A climatology of F region gravity wave propagation over the middle and upper atmosphere radar , 1997 .

[43]  T. Dunkerton,et al.  A Quasi-Linear Study of Gravity-Wave Saturation and Self-Acceleration , 1984 .

[44]  K. Hasselmann A criterion for nonlinear wave stability , 1967, Journal of Fluid Mechanics.

[45]  Zhangai Luo,et al.  Gravity Wave Excitation by Geostrophic Adjustment of the Jet Stream. Part I: Two-Dimensional Forcing , 1992 .

[46]  C. Hines INTERNAL ATMOSPHERIC GRAVITY WAVES AT IONOSPHERIC HEIGHTS , 1960 .

[47]  Tadahiko Ogawa,et al.  Observations and modeling of 630 nm airglow and total electron content associated with traveling ionospheric disturbances over Shigaraki, Japan , 2002 .

[48]  T. Tsuda,et al.  Breaking of small‐scale gravity wave and transition to turbulence observed in OH airglow , 2001 .

[49]  J. Riley,et al.  On the breakdown into turbulence of propagating internal waves , 1996 .

[50]  F. Kamalabadi,et al.  Gravity wave and tidal influences on equatorial spread F based on observations during the Spread F Experiment (SpreadFEx) , 2008 .

[51]  S. Eckermann,et al.  A three-dimensional nonhydrostatic ray-tracing model for gravity waves : formulation and preliminary results for the middle atmosphere , 1995 .

[52]  S. Vadas,et al.  Thermospheric responses to gravity waves arising from mesoscale convective complexes , 2004 .

[53]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[54]  S. Vadas,et al.  Generation of large-scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively generated gravity waves , 2009 .

[55]  B. Sutherland Propagation and reflection of internal waves , 1999 .

[56]  Bodo W. Reinisch,et al.  Investigations of thermospheric‐ionospheric dynamics with 6300‐Å images from the Arecibo Observatory , 1997 .

[57]  P. Drazin On the instability of an internal gravity wave , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[58]  F. S. Johnson,et al.  Occurrence of equatorial F region irregularities: Evidence for tropospheric seeding , 1998 .

[59]  C. Hines,et al.  WKB Approximation in Application to Acoustic‐Gravity Waves , 1970 .

[60]  A. D. Danilov Direct and indirect estimates of turbulence around the turbopause , 1984 .

[61]  S. Vadas,et al.  Gravity wave radiation and mean responses to local body forces in the atmosphere , 2001 .

[62]  Steven C. Reising,et al.  Concentric gravity waves in the mesosphere generated by deep convective plumes in the lower atmosphere near Fort Collins, Colorado , 2009 .

[63]  G. Whitham A general approach to linear and non-linear dispersive waves using a Lagrangian , 1965, Journal of Fluid Mechanics.

[64]  P. Dyson,et al.  Evidence for thermospheric gravity waves in the southern polar cap from ground-based vertical velocity and photometric observations , 2001 .

[65]  F. Bretherton Momentum transport by gravity waves , 1969 .

[66]  J. Klostermeyer Nonlinear Investigation of the Spatial Resonance Effect in the Nighttime Equatorial F Region , 1978 .

[67]  E. R. de Paula,et al.  Gravity wave initiation of equatorial spread F/plasma bubble irregularities based on observational data from the SpreadFEx campaign , 2009 .

[68]  H. Teitelbaum,et al.  Thin shear turbulent layers within the lower thermosphere induced by non-linear interaction between tides and gravity waves , 1978 .

[69]  R. Grimshaw The Modulation of an Internal Gravity‐Wave Packet, and the Resonance with the Mean Motion , 1977 .

[70]  Richard D. Bennett,et al.  The excitation of ducted modes by passing internal waves , 1996 .

[71]  V. Pasko,et al.  Excitation of Ducted Gravity Waves in the Lower Thermosphere by Tropospheric Sources , 2008 .

[72]  G. Schubert,et al.  Nonlinear evolution of an upward propagating gravity wave: overturning, convection, transience and turbulence , 1990 .

[73]  P. Stamus,et al.  Convection: the likely source of the medium-scale gravity waves observed in the OH airglow layer near Brasilia, Brazil, during the SpreadFEx campaign , 2009 .

[74]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.

[75]  J. Klostermeyer Gravity waves in the F-region☆ , 1969 .

[76]  T. Tsuda,et al.  Gravity waves and ionospheric irregularities over tropical convection zones observed by GPS/MET Radio Occultation , 2001 .

[77]  G. Klaassen,et al.  Toward a Unified Theory of Gravity Wave Stability. , 1997 .

[78]  M. Nicolls,et al.  Temporal evolution of neutral, thermospheric winds and plasma response using PFISR measurements of gravity waves , 2009 .

[79]  D. Fritts,et al.  Vorticity dynamics in a breaking internal gravity wave. Part 2. Vortex interactions and transition to turbulence , 1998, Journal of Fluid Mechanics.

[80]  T. Clark,et al.  Numerical Modeling of Gravity Wave Generation by Deep Tropical Convection , 2001 .

[81]  S. Vadas,et al.  Gravity wave penetration into the thermosphere: sensitivity to solar cycle variations and mean winds , 2008 .

[82]  David C. Fritts,et al.  Wave breaking and transition to turbulence in stratified shear flows , 1996 .

[83]  F. Djuth,et al.  Continuous quasiperiodic thermospheric waves over Arecibo , 2007 .

[84]  B. Sutherland Internal wave reflection in uniform shear , 2000 .

[85]  B. Sutherland Internal wave instability: Wave-wave versus wave-induced mean flow interactions , 2006 .

[86]  S. Ma,et al.  Case studies of the propagation characteristics of auroral TIDS with EISCAT CP2 data using maximum entropy cross-spectral analysis , 1998 .

[87]  S. Vadas Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources , 2007 .

[88]  C. Hines The saturation of gravity waves in the middle atmosphere. Part III: Formation of the turbopause and of turbulent layers beneath it , 1991 .

[89]  I. Harris,et al.  Thermospheric gravity waves: Observations and interpretation using the transfer function model (TFM) , 1990 .