Stair blue noise sampling

A common solution to reducing visible aliasing artifacts in image reconstruction is to employ sampling patterns with a blue noise power spectrum. These sampling patterns can prevent discernible artifacts by replacing them with incoherent noise. Here, we propose a new family of blue noise distributions, Stair blue noise, which is mathematically tractable and enables parameter optimization to obtain the optimal sampling distribution. Furthermore, for a given sample budget, the proposed blue noise distribution achieves a significantly larger alias-free low-frequency region compared to existing approaches, without introducing visible artifacts in the mid-frequencies. We also develop a new sample synthesis algorithm that benefits from the use of an unbiased spatial statistics estimator and efficient optimization strategies.

[1]  Amitabh Varshney,et al.  PixelPie: maximal Poisson-disk sampling with rasterization , 2013, HPG '13.

[2]  BremerPeer-Timo,et al.  Stair blue noise sampling , 2016 .

[3]  Michael Balzer,et al.  Capacity-constrained point distributions: a variant of Lloyd's method , 2009, ACM Trans. Graph..

[4]  Oliver Deussen,et al.  Farthest-point optimized point sets with maximized minimum distance , 2011, HPG '11.

[5]  Dani Lischinski,et al.  Recursive Wang tiles for real-time blue noise , 2006, ACM Trans. Graph..

[6]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[7]  Jian-Jun Zhang,et al.  Blue noise sampling using an SPH-based method , 2015, ACM Trans. Graph..

[8]  Li-Yi Wei,et al.  Point sampling with general noise spectrum , 2012, ACM Trans. Graph..

[9]  Gurprit Singh,et al.  Fast tile-based adaptive sampling with user-specified Fourier spectra , 2014, ACM Trans. Graph..

[10]  Mohamed S. Ebeida,et al.  k-d Darts , 2013, ACM Trans. Graph..

[11]  Li-Yi Wei,et al.  Parallel Poisson disk sampling , 2008, ACM Trans. Graph..

[12]  D. Stoyan,et al.  Statistical Analysis and Modelling of Spatial Point Patterns , 2008 .

[13]  Robert Ulichney,et al.  Dithering with blue noise , 1988, Proc. IEEE.

[14]  Raanan Fattal Blue-noise point sampling using kernel density model , 2011, SIGGRAPH 2011.

[15]  Li-yi Wei Multi-class blue noise sampling , 2010 .

[16]  Mohamed S. Ebeida,et al.  A Simple Algorithm for Maximal Poisson‐Disk Sampling in High Dimensions , 2012, Comput. Graph. Forum.

[17]  Markus Gross,et al.  Analysis and synthesis of point distributions based on pair correlation , 2012, ACM Trans. Graph..

[18]  F. Clarke On _{_{*}()}(_{*}(), _{*}()) , 1979 .

[19]  Oliver Deussen,et al.  Blue noise sampling with controlled aliasing , 2013, TOGS.

[20]  Pramod K. Varshney,et al.  Theoretical guarantees for poisson disk sampling using pair correlation function , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[21]  Robert L. Cook,et al.  Stochastic sampling in computer graphics , 1988, TOGS.

[22]  Gurprit Singh,et al.  Variance analysis for Monte Carlo integration , 2015, ACM Trans. Graph..

[23]  Robert Bridson,et al.  Fast Poisson disk sampling in arbitrary dimensions , 2007, SIGGRAPH '07.

[24]  Mathieu Desbrun,et al.  Blue noise through optimal transport , 2012, ACM Trans. Graph..

[25]  H. Wendrock,et al.  Estimation variances for estimators of product densities and pair correlation functions of planar point processes , 1993 .

[26]  Greg Humphreys,et al.  A spatial data structure for fast Poisson-disk sample generation , 2006, ACM Trans. Graph..

[27]  Ares Lagae,et al.  A Comparison of Methods for Generating Poisson Disk Distributions , 2008, Comput. Graph. Forum.

[28]  Steve C. Maddock,et al.  Accurate multidimensional Poisson-disk sampling , 2009, TOGS.

[29]  Mohamed S. Ebeida,et al.  Efficient maximal poisson-disk sampling , 2011, ACM Trans. Graph..