Two-level control of bipedal walking model

This paper presents a two-level control strategy for bipedal walking model that accounts for implicit control of push-off and power absorption on the between-step control level and tracking of imposed holonomic constraints on kinematic variables via feedback control on within-step control level. The proposed control strategy was tested in a biologically inspired model with minimal set of segments that allows evolution of human-like push-off and power absorption. We evaluated the performance of the biped walking model in terms of how variations in torso position and gait velocity relate to push-off and power absorption. The results show that the proposed control strategy can accommodate to various trunk inclinations and gait velocities in a similar way as seen in humans.