Spectrotemporal Contrast Kernels for Neurons in Primary Auditory Cortex

Auditory neurons are often described in terms of their spectrotemporal receptive fields (STRFs). These map the relationship between features of the sound spectrogram and firing rates of neurons. Recently, we showed that neurons in the primary fields of the ferret auditory cortex are also subject to gain control: when sounds undergo smaller fluctuations in their level over time, the neurons become more sensitive to small-level changes (Rabinowitz et al., 2011). Just as STRFs measure the spectrotemporal features of a sound that lead to changes in the firing rates of neurons, in this study, we sought to estimate the spectrotemporal regions in which sound statistics lead to changes in the gain of neurons. We designed a set of stimuli with complex contrast profiles to characterize these regions. This allowed us to estimate the STRFs of cortical neurons alongside a set of spectrotemporal contrast kernels. We find that these two sets of integration windows match up: the extent to which a stimulus feature causes the firing rate of a neuron to change is strongly correlated with the extent to which the contrast of that feature modulates the gain of the neuron. Adding contrast kernels to STRF models also yields considerable improvements in the ability to capture and predict how auditory cortical neurons respond to statistically complex sounds.

[1]  Alex R. Wade,et al.  Representation of Concurrent Stimuli by Population Activity in Visual Cortex , 2014, Neuron.

[2]  S. Morad,et al.  Ceramide-orchestrated signalling in cancer cells , 2012, Nature Reviews Cancer.

[3]  Shawn R. Olsen,et al.  Gain control by layer six in cortical circuits of vision , 2012, Nature.

[4]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[5]  A. Pouget,et al.  Marginalization in Neural Circuits with Divisive Normalization , 2011, The Journal of Neuroscience.

[6]  Sarah M. N. Woolley,et al.  Extra-Classical Tuning Predicts Stimulus-Dependent Receptive Fields in Auditory Neurons , 2011, The Journal of Neuroscience.

[7]  Neil C. Rabinowitz,et al.  Contrast Gain Control in Auditory Cortex , 2011, Neuron.

[8]  Maria V. Sanchez-Vives,et al.  Cortical auditory adaptation in the awake rat and the role of potassium currents. , 2011, Cerebral cortex.

[9]  M. Carandini,et al.  GABAA Inhibition Controls Response Gain in Visual Cortex , 2011, The Journal of Neuroscience.

[10]  G. DeAngelis,et al.  A Normalization Model of Multisensory Integration , 2011, Nature Neuroscience.

[11]  Sarah M. N. Woolley,et al.  A Generalized Linear Model for Estimating Spectrotemporal Receptive Fields from Responses to Natural Sounds , 2011, PloS one.

[12]  D. Ringach Population coding under normalization , 2010, Vision Research.

[13]  David Huard,et al.  PyMC: Bayesian Stochastic Modelling in Python. , 2010, Journal of statistical software.

[14]  Johannes C. Dahmen,et al.  Adaptation to Stimulus Statistics in the Perception and Neural Representation of Auditory Space , 2010, Neuron.

[15]  L. Abbott,et al.  Generating sparse and selective third-order responses in the olfactory system of the fly , 2010, Proceedings of the National Academy of Sciences.

[16]  Shawn R. Olsen,et al.  Divisive Normalization in Olfactory Population Codes , 2010, Neuron.

[17]  Kerry M. M. Walker,et al.  Neural Ensemble Codes for Stimulus Periodicity in Auditory Cortex , 2010, The Journal of Neuroscience.

[18]  Robert E Weiss,et al.  Bayesian methods for data analysis. , 2010, American journal of ophthalmology.

[19]  Brian J Malone,et al.  Temporal Codes for Amplitude Contrast in Auditory Cortex , 2010, The Journal of Neuroscience.

[20]  Holger Schulze,et al.  Long‐range effects of GABAergic inhibition in gerbil primary auditory cortex , 2010, The European journal of neuroscience.

[21]  A. Zador,et al.  Long-lasting context dependence constrains neural encoding models in rodent auditory cortex. , 2008, Journal of neurophysiology.

[22]  G. Christianson,et al.  Stimulus-Specific Adaptation Occurs in the Auditory Thalamus , 2009, The Journal of Neuroscience.

[23]  J. Eggermont,et al.  Spectrotemporal receptive fields in anesthetized cat primary auditory cortex are context dependent. , 2009, Cerebral cortex.

[24]  M. Malmierca,et al.  Stimulus-Specific Adaptation in the Inferior Colliculus of the Anesthetized Rat , 2009, The Journal of Neuroscience.

[25]  S. David,et al.  Rapid Synaptic Depression Explains Nonlinear Modulation of Spectro-Temporal Tuning in Primary Auditory Cortex by Natural Stimuli , 2009, The Journal of Neuroscience.

[26]  A. Fairhall,et al.  Timescales of Inference in Visual Adaptation , 2009, Neuron.

[27]  C. Atencio,et al.  Cooperative Nonlinearities in Auditory Cortical Neurons , 2008, Neuron.

[28]  Guangying K. Wu,et al.  Lateral Sharpening of Cortical Frequency Tuning by Approximately Balanced Inhibition , 2008, Neuron.

[29]  M. Wehr,et al.  Level dependence of contextual modulation in auditory cortex. , 2008, Journal of neurophysiology.

[30]  M. Sahani,et al.  Nonlinearities and Contextual Influences in Auditory Cortical Responses Modeled with Multilinear Spectrotemporal Methods , 2008, The Journal of Neuroscience.

[31]  M. Sahani,et al.  The Consequences of Response Nonlinearities for Interpretation of Spectrotemporal Receptive Fields , 2008, The Journal of Neuroscience.

[32]  L. Paninski,et al.  Inferring input nonlinearities in neural encoding models , 2008, Network.

[33]  Guangying K. Wu,et al.  Defining cortical frequency tuning with recurrent excitatory circuitry , 2007, Nature Neuroscience.

[34]  Jonathan Z. Simon,et al.  Temporal Symmetry in Primary Auditory Cortex: Implications for Cortical Connectivity , 2006, Neural Computation.

[35]  L. Carney,et al.  Neural rate and timing cues for detection and discrimination of amplitude-modulated tones in the awake rabbit inferior colliculus. , 2007, Journal of neurophysiology.

[36]  Katherine I. Nagel,et al.  Temporal Processing and Adaptation in the Songbird Auditory Forebrain , 2006, Neuron.

[37]  J. Gallant,et al.  Complete functional characterization of sensory neurons by system identification. , 2006, Annual review of neuroscience.

[38]  Thane Fremouw,et al.  Sound representation methods for spectro-temporal receptive field estimation , 2006, Journal of Computational Neuroscience.

[39]  Sarah M. N. Woolley,et al.  Stimulus-Dependent Auditory Tuning Results in Synchronous Population Coding of Vocalizations in the Songbird Midbrain , 2006, The Journal of Neuroscience.

[40]  I. Dean,et al.  Neural population coding of sound level adapts to stimulus statistics , 2005, Nature Neuroscience.

[41]  I. Nelken,et al.  Functional organization of ferret auditory cortex. , 2005, Cerebral cortex.

[42]  Jiping Zhang,et al.  Modulation of level response areas and stimulus selectivity of neurons in cat primary auditory cortex. , 2005, Journal of neurophysiology.

[43]  James J DiCarlo,et al.  Multiple Object Response Normalization in Monkey Inferotemporal Cortex , 2005, The Journal of Neuroscience.

[44]  Anne Hsu,et al.  Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds , 2005, Nature Neuroscience.

[45]  A. Zador,et al.  Synaptic Mechanisms of Forward Suppression in Rat Auditory Cortex , 2005, Neuron.

[46]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[47]  Lee M. Miller,et al.  Auditory thalamocortical transformation: structure and function , 2005, Trends in Neurosciences.

[48]  I. Nelken,et al.  Multiple Time Scales of Adaptation in Auditory Cortex Neurons , 2004, The Journal of Neuroscience.

[49]  J. Eggermont,et al.  Stimulus dependence of spectro-temporal receptive fields in cat primary auditory cortex , 2004, Hearing Research.

[50]  Israel Nelken,et al.  Large-scale organization of ferret auditory cortex revealed using continuous acquisition of intrinsic optical signals. , 2004, Journal of neurophysiology.

[51]  Christian K. Machens,et al.  Linearity of Cortical Receptive Fields Measured with Natural Sounds , 2004, The Journal of Neuroscience.

[52]  C. Schreiner,et al.  Short-term adaptation of auditory receptive fields to dynamic stimuli. , 2004, Journal of neurophysiology.

[53]  Jonathan Z. Simon,et al.  Robust Spectrotemporal Reverse Correlation for the Auditory System: Optimizing Stimulus Design , 2000, Journal of Computational Neuroscience.

[54]  A. Aertsen,et al.  The Spectro-Temporal Receptive Field , 1981, Biological Cybernetics.

[55]  A. Aertsen,et al.  Spectro-temporal receptive fields of auditory neurons in the grassfrog , 1980, Biological Cybernetics.

[56]  A. Aertsen,et al.  Spectro-temporal receptive fields of auditory neurons in the grassfrog , 1980, Biological Cybernetics.

[57]  Eero P. Simoncelli,et al.  To appear in: The New Cognitive Neurosciences, 3rd edition Editor: M. Gazzaniga. MIT Press, 2004. Characterization of Neural Responses with Stochastic Stimuli , 2022 .

[58]  L. M. Kitzes,et al.  Intrinsic inter- and intralaminar connections and their relationship to the tonotopic map in cat primary auditory cortex , 2004, Experimental Brain Research.

[59]  Kenneth D Miller,et al.  Multiplicative Gain Changes Are Induced by Excitation or Inhibition Alone , 2003, The Journal of Neuroscience.

[60]  J. Fritz,et al.  Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex , 2003, Nature Neuroscience.

[61]  Christoph E Schreiner,et al.  Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex. , 2003, Journal of neurophysiology.

[62]  M. Meister,et al.  Fast and Slow Contrast Adaptation in Retinal Circuitry , 2002, Neuron.

[63]  M. Merzenich,et al.  Changes of AI receptive fields with sound density. , 2002, Journal of neurophysiology.

[64]  K. H. Britten,et al.  Contrast dependence of response normalization in area MT of the rhesus macaque. , 2002, Journal of neurophysiology.

[65]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[66]  C. Schreiner,et al.  Nonlinear Spectrotemporal Sound Analysis by Neurons in the Auditory Midbrain , 2002, The Journal of Neuroscience.

[67]  Maneesh Sahani,et al.  How Linear are Auditory Cortical Responses? , 2002, NIPS.

[68]  Lee M. Miller,et al.  Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex. , 2002, Journal of neurophysiology.

[69]  Adrienne L. Fairhall,et al.  Efficiency and ambiguity in an adaptive neural code , 2001, Nature.

[70]  Eero P. Simoncelli,et al.  Natural signal statistics and sensory gain control , 2001, Nature Neuroscience.

[71]  Israel Nelken,et al.  Relating cluster and population responses to natural sounds and tonal stimuli in cat primary auditory cortex , 2001, Hearing Research.

[72]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[73]  D J Field,et al.  Local Contrast in Natural Images: Normalisation and Coding Efficiency , 2000, Perception.

[74]  H Scheich,et al.  Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). III. Anatomical subdivisions and corticocortical connections , 2000, The European journal of neuroscience.

[75]  R A Reale,et al.  Directional sensitivity of neurons in the primary auditory (AI) cortex of the cat to successive sounds ordered in time and space. , 2000, Journal of neurophysiology.

[76]  K. Sen,et al.  Spectral-temporal Receptive Fields of Nonlinear Auditory Neurons Obtained Using Natural Sounds , 2022 .

[77]  A. Pouget,et al.  Reading population codes: a neural implementation of ideal observers , 1999, Nature Neuroscience.

[78]  K. H. Britten,et al.  Spatial Summation in the Receptive Fields of MT Neurons , 1999, The Journal of Neuroscience.

[79]  M. Merzenich,et al.  Optimizing sound features for cortical neurons. , 1998, Science.

[80]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[81]  R. Wurtz,et al.  Responses of MT and MST neurons to one and two moving objects in the receptive field. , 1997, Journal of neurophysiology.

[82]  G. Orban,et al.  Responses of macaque inferior temporal neurons to overlapping shapes. , 1997, Cerebral cortex.

[83]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[84]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[85]  Michele A. Basso,et al.  Modulation of neuronal activity by target uncertainty , 1997, Nature.

[86]  C. Schreiner,et al.  Time course of forward masking tuning curves in cat primary auditory cortex. , 1997, Journal of neurophysiology.

[87]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[88]  Eero P. Simoncelli,et al.  Computational models of cortical visual processing. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[89]  Michael B. Calford,et al.  Monaural inhibition in cat auditory cortex. , 1995, Journal of neurophysiology.

[90]  William Bialek,et al.  Statistics of Natural Images: Scaling in the Woods , 1993, NIPS.

[91]  E. Miller,et al.  Suppression of visual responses of neurons in inferior temporal cortex of the awake macaque by addition of a second stimulus , 1993, Brain Research.

[92]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[93]  T. Yin,et al.  Responses to amplitude-modulated tones in the auditory nerve of the cat. , 1992, The Journal of the Acoustical Society of America.

[94]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[95]  Adrian Rees,et al.  Responses of neurons in the inferior colliculus of the rat to AM and FM tones , 1983, Hearing Research.

[96]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[97]  C. Enroth-Cugell,et al.  Adaptation and dynamics of cat retinal ganglion cells , 1973, The Journal of physiology.