Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks

Variational Autoencoders (VAEs) are expressive latent variable models that can be used to learn complex probability distributions from training data. However, the quality of the resulting model crucially relies on the expressiveness of the inference model. We introduce Adversarial Variational Bayes (AVB), a technique for training Variational Autoencoders with arbitrarily expressive inference models. We achieve this by introducing an auxiliary discriminative network that allows to rephrase the maximum-likelihood-problem as a two-player game, hence establishing a principled connection between VAEs and Generative Adversarial Networks (GANs). We show that in the nonparametric limit our method yields an exact maximum-likelihood assignment for the parameters of the generative model, as well as the exact posterior distribution over the latent variables given an observation. Contrary to competing approaches which combine VAEs with GANs, our approach has a clear theoretical justification, retains most advantages of standard Variational Autoencoders and is easy to implement.

[1]  S. M. Ali,et al.  A General Class of Coefficients of Divergence of One Distribution from Another , 1966 .

[2]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[3]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[4]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[5]  Trevor Hastie,et al.  The elements of statistical learning. 2001 , 2001 .

[6]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[7]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[8]  Martin J. Wainwright,et al.  Estimating Divergence Functionals and the Likelihood Ratio by Convex Risk Minimization , 2008, IEEE Transactions on Information Theory.

[9]  Z. Szabó Information Theoretical Estimators (ITE) Toolbox , 2013, NIPS 2013.

[10]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[11]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[12]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[13]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[14]  Xiaogang Wang,et al.  Deep Learning Face Attributes in the Wild , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[15]  Max Welling,et al.  Markov Chain Monte Carlo and Variational Inference: Bridging the Gap , 2014, ICML.

[16]  Andrew Gelman,et al.  Automatic Variational Inference in Stan , 2015, NIPS.

[17]  Yoshua Bengio,et al.  NICE: Non-linear Independent Components Estimation , 2014, ICLR.

[18]  Alex Graves,et al.  Conditional Image Generation with PixelCNN Decoders , 2016, NIPS.

[19]  Qiang Liu Wild Variational Approximations , 2016 .

[20]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Koray Kavukcuoglu,et al.  Pixel Recurrent Neural Networks , 2016, ICML.

[22]  Theofanis Karaletsos,et al.  Adversarial Message Passing For Graphical Models , 2016, ArXiv.

[23]  Ole Winther,et al.  Auxiliary Deep Generative Models , 2016, ICML.

[24]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[25]  Dustin Tran,et al.  Operator Variational Inference , 2016, NIPS.

[26]  Jascha Sohl-Dickstein,et al.  Improved generator objectives for GANs , 2016, ArXiv.

[27]  Max Welling,et al.  Improving Variational Auto-Encoders using Householder Flow , 2016, ArXiv.

[28]  Ole Winther,et al.  Autoencoding beyond pixels using a learned similarity metric , 2015, ICML.

[29]  Dustin Tran,et al.  Variational Gaussian Process , 2015, ICLR.

[30]  Sebastian Nowozin,et al.  f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization , 2016, NIPS.

[31]  Samy Bengio,et al.  Density estimation using Real NVP , 2016, ICLR.

[32]  Yoshua Bengio,et al.  Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Trevor Darrell,et al.  Adversarial Feature Learning , 2016, ICLR.

[34]  Ferenc Huszár,et al.  Variational Inference using Implicit Distributions , 2017, ArXiv.

[35]  Pieter Abbeel,et al.  Variational Lossy Autoencoder , 2016, ICLR.

[36]  Max Welling,et al.  Improved Variational Inference with Inverse Autoregressive Flow , 2016, NIPS 2016.

[37]  Ruslan Salakhutdinov,et al.  On the Quantitative Analysis of Decoder-Based Generative Models , 2016, ICLR.

[38]  Qiang Liu,et al.  Two Methods for Wild Variational Inference , 2016, 1612.00081.

[39]  Aaron C. Courville,et al.  Adversarially Learned Inference , 2016, ICLR.