The energy dependence of contrast and damage in electron cryomicroscopy of biological molecules

[1]  Richard Henderson,et al.  Charge accumulation in electron cryomicroscopy , 2018, Ultramicroscopy.

[2]  M. F. Smith,et al.  Quantitative energy-filtered electron microscopy of biological molecules in ice. , 1992, Ultramicroscopy.

[3]  C. Russo,et al.  Ultrastable gold substrates: Properties of a support for high-resolution electron cryomicroscopy of biological specimens , 2016, Journal of structural biology.

[4]  R. Henderson,et al.  Microscopic charge fluctuations cause minimal contrast loss in cryoEM , 2018, Ultramicroscopy.

[5]  L. Reimer,et al.  Contrast in the electron spectroscopic imaging mode of a TEM , 1990 .

[6]  Andrew Bleloch,et al.  Plasmon spectroscopy of free-standing graphene films , 2008 .

[7]  R. Egerton Radiation damage to organic and inorganic specimens in the TEM. , 2019, Micron.

[8]  L. Reimer,et al.  Transmission electron microscopy , 2019, Bancroft's Theory and Practice of Histological Techniques.

[9]  H. Rose Future trends in aberration-corrected electron microscopy , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  J. Biskupek,et al.  Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV. , 2016, Physical review letters.

[11]  Akio Takaoka,et al.  Microscopic tomography with ultra-HVEM and applications. , 2008, Ultramicroscopy.

[12]  R. Henderson The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules , 1995, Quarterly Reviews of Biophysics.

[13]  R Henderson,et al.  Images of paraffin monolayer crystals with perfect contrast: minimization of beam-induced specimen motion. , 2011, Ultramicroscopy.

[14]  Peter Hartel,et al.  First application of Cc-corrected imaging for high-resolution and energy-filtered TEM. , 2009, Journal of electron microscopy.

[15]  R. Egerton Choice of operating voltage for a transmission electron microscope. , 2014, Ultramicroscopy.

[16]  Gabriel C Lander,et al.  Achieving better than 3 Å resolution by single particle cryo-EM at 200 keV , 2017, Nature Methods.

[17]  L. Reimer,et al.  Contrast in the electron spectroscopic imaging mode of a TEM. I. Influence of zero‐loss filtering on scattering contrast , 1989 .

[18]  K A Taylor,et al.  Electron microscopy of frozen hydrated biological specimens. , 1976, Journal of ultrastructure research.

[19]  R. Glaeser,et al.  Limitations to significant information in biological electron microscopy as a result of radiation damage. , 1971, Journal of ultrastructure research.

[20]  R. Egerton,et al.  Electron Energy-Loss Spectroscopy in the Electron Microscope , 1995, Springer US.

[21]  Anchi Cheng,et al.  Routine Determination of Ice Thickness for Cryo-EM Grids , 2018, bioRxiv.

[22]  L. Allen,et al.  Elemental mapping in achromatic atomic-resolution energy-filtered transmission electron microscopy. , 2014, Ultramicroscopy.

[23]  R. Henderson,et al.  Ewald sphere correction using a single side-band image processing algorithm , 2018, Ultramicroscopy.

[24]  Lori A. Passmore,et al.  Ultrastable gold substrates for electron cryomicroscopy , 2014, Science.

[25]  W. Baumeister,et al.  Electron tomography of ice-embedded prokaryotic cells. , 1998, Biophysical journal.

[26]  P. Crozier Measurement of inelastic electron scattering cross-sections by electron energy-loss spectroscopy , 1990 .

[27]  M. Malac,et al.  Radiation damage in the TEM and SEM. , 2004, Micron.

[28]  R. Henderson,et al.  Measurement and evaluation of electron diffraction patterns from two-dimensional crystals , 1984 .

[29]  Robert M Glaeser,et al.  Retrospective: radiation damage and its associated "information limitations". , 2008, Journal of structural biology.

[30]  Clemens Schulze-Briese,et al.  Origin and temperature dependence of radiation damage in biological samples at cryogenic temperatures , 2009, Proceedings of the National Academy of Sciences.