Monotonic and cyclic crack growth response of a Mo–Si–B alloy

[1]  M. Kramer,et al.  Chlorination treatment to improve the oxidation resistance of Nb-Mo-Si-B alloys , 2005 .

[2]  M. Böning,et al.  Assessment of a powder metallurgical processing route for refractory metal silicide alloys , 2005 .

[3]  T. Murakami,et al.  Oxidation protective silicide coating on Mo-Si-B alloys , 2005 .

[4]  R. Sakidja,et al.  Phase stability and alloying behavior in the Mo-Si-B system , 2005 .

[5]  R. Ritchie,et al.  Optimization of Mo-Si-B intermetallic alloys , 2005 .

[6]  K. Kumar,et al.  High-temperature compression behavior of Mo–Si–B alloys , 2004 .

[7]  M. Kramer,et al.  Oxidation Behavior of Mo-Si-B Alloys in Wet Air , 2004 .

[8]  J. Lewandowski,et al.  Ultrahigh-Temperature Nb-Silicide-Based Composites , 2003 .

[9]  D. Dimiduk,et al.  Mo-Si-B Alloys: Developing a Revolutionary Turbine-Engine Material , 2003 .

[10]  N. Nomura,et al.  Thermal expansion, strength and oxidation resistance of Mo/Mo5SiB2 in-situ composites at elevated temperatures , 2003 .

[11]  M. Yamaguchi,et al.  Room temperature fracture toughness and high temperature strength of T2/Moss and (Mo,Nb)ss/T1/T2 eutectic alloys in the Mo–Si–B system , 2003 .

[12]  D. Johnson,et al.  Processing and Properties of Multiphase Mo-Si-B Alloys , 2003 .

[13]  J. Schneibel High temperature strength of Mo–Mo3Si–Mo5SiB2 molybdenum silicides , 2003 .

[14]  D. R. Johnson,et al.  Effects of microstructure on the oxidation behavior of multiphase Mo–Si–B alloys , 2003 .

[15]  R. Ritchie,et al.  On the fracture and fatigue properties of Mo-Mo3Si-Mo5SiB2 refractory intermetallic alloys at ambient to elevated temperatures (25 °C to 1300 °C) , 2003 .

[16]  Robert P. Wei,et al.  Influence of dwell time on fatigue crack growth in nickel-base superalloys , 2002 .

[17]  Joonsik Park Coating designs for oxidation control of Mo–Si–B alloys , 2002 .

[18]  E. Summers,et al.  Oxidation behavior of extruded Mo5Si3Bx–MoSi2–MoB intermetallics from 600°–1600 °C , 2002 .

[19]  Katsushi Tanaka,et al.  Mechanical properties of Mo5SiB2 single crystals , 2002 .

[20]  D. Dimiduk,et al.  Oxidation mechanisms in Mo-reinforced Mo5SiB2(T2)–Mo3Si alloys , 2002 .

[21]  M. Kramer,et al.  A Mo–Si–B intermetallic alloy with a continuous α-Mo matrix , 2002 .

[22]  R. Zee,et al.  Yielding and flow behavior of Mo5Si3 single crystals , 2001 .

[23]  K. Ito,et al.  Physical and mechanical properties of single crystals of the T2 phase in the Mo–Si–B system , 2001 .

[24]  R. Ritchie,et al.  Ambient to high temperature fracture toughness and fatigue-crack propagation behavior in a Mo–12Si–8.5B (at.%) intermetallic , 2000 .

[25]  J. Schneibel,et al.  Stoichiometry and mechanical properties of Mo3Si , 2000 .

[26]  R. Sakidja,et al.  The formation of Mo precipitates in a supersaturated Mo5SiB2 intermetallic phase , 1999 .

[27]  M. Akinc,et al.  Oxide scale formation and isothermal oxidation behavior of Mo–Si–B intermetallics at 600–1000°C , 1999 .

[28]  Robert P. Wei,et al.  Environmentally assisted crack growth in a Ni–18Cr–18Fe ternary alloy at elevated temperatures , 1998 .

[29]  Guy Pluvinage,et al.  High temperature isothermal and thermomechanical fatigue on a molybdenum-based alloy , 1998 .

[30]  D. B. Miracle,et al.  Second International Symposium on Structural Intermetallics , 1997 .

[31]  R. F. Hall,et al.  Elevated temperature fatigue crack growth under dwell conditions in Waspaloy , 1997 .

[32]  D. P. Mason,et al.  On the creep of directionally solidified MoSi2-Mo5Si3 eutectics , 1995 .

[33]  G. Kostorz,et al.  Microstructure and plasticity of two molybdenum-base alloys (TZM) , 1993 .

[34]  J. Knott,et al.  Effects of temperature and environment on fatigue crack growth mechanisms in a 9% Cr 1% Mo steel , 1992 .

[35]  N. Floquet,et al.  Structural and morphological studies of the growth of MoO3 scales during high-temperature oxidation of molybdenum , 1992 .

[36]  A. Plumtree,et al.  Fatigue-creep-environmental interaction: a kinetic approach , 1991 .

[37]  B. Wilshire,et al.  Creep and fracture of engineering materials and structures : proceedings of the Third International Conference held at University College, Swansea, 5th-10th April, 1987 , 1981 .

[38]  J. Pfeifer,et al.  Evaluation of high-temperature alloys for helium gas turbines , 1984 .

[39]  M. Ashby,et al.  Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics , 1982 .

[40]  A. Kumar,et al.  Grain boundary segregation and intergranular fracture in molybdenum , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[41]  P. Mazzetti,et al.  On the effect of the crystalline structure on fatigue: Comparison between body-centred metals (Ta, Nb, Mo and W) and face-centred and hexagonal metals , 1965 .

[42]  L. Foster Metallurgy of the rarer metals , 1956 .

[43]  T. Nieh,et al.  Deformation of a multiphase Mo–9.4Si–13.8B alloy at elevated temperatures , 2001 .

[44]  R. N. Wright,et al.  Processing and mechanical properties of a molybdenum silicide with the composition Mo–12Si–8.5B (at.%) , 2001 .

[45]  M. Kramer,et al.  Compressive creep behavior of Mo5Si3 with the addition of boron , 1996 .

[46]  C. T. Liu,et al.  High-temperature ordered intermetallic alloys , 1985 .

[47]  P. H. Thornton,et al.  Fatigue fracture in polygrystalline molybdenum , 1970 .

[48]  J. C. Sawyer,et al.  ELEVATED TEMPERATURE FATIGUE OF TZC MOLYBDENUM ALLOY UNDER HIGH FREQUENCY AND HIGH VACUUM CONDITIONS. Topical Report No. 1. , 1967 .