Hybrid fuzzy proportional-integral plus conventional derivative control of linear and nonlinear systems

This paper presents a new approach toward the optimal design of a hybrid proportional-integral-derivative (PID) controller applicable for controlling linear as well as nonlinear systems using genetic algorithms (GAs). The proposed hybrid PID controller is derived by replacing the conventional PI controller by a two-input normalized linear fuzzy logic controller (FLC) and executing the conventional D controller in an incremental form. The salient features of the proposed controller are as follows: (1) the linearly defined FLC can generate nonlinear output so that high nonlinearities of complex systems can be handled; (2) only one well-defined linear fuzzy control space is required for both linear and nonlinear systems; (3) optimal tuning of the controller gains is carried out by using a GA; and (4) it is simple and easy to implement. Simulation results on a temperature control system (linear system) and a missile model (nonlinear system) demonstrate the effectiveness and robustness of the proposed controller.

[1]  Dr. Hans Hellendoorn,et al.  An Introduction to Fuzzy Control , 1996, Springer Berlin Heidelberg.

[2]  David M. Auslander,et al.  Control and dynamic systems , 1970 .

[3]  Hao Ying,et al.  A nonlinear fuzzy controller with linear control rules is the sum of a global two-dimensional multilevel relay and a local nonlinear proportional-integral controller , 1993, Autom..

[4]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms in Engineering Applications , 1997, Springer Berlin Heidelberg.

[5]  T. Sreenuch,et al.  Lateral Acceleration Control Design of a Non-Linear Homing Missile , 2003, 2003 4th International Conference on Control and Automation Proceedings.

[6]  Masayoshi Tomizuka,et al.  Fuzzy gain scheduling of PID controllers , 1992, [Proceedings 1992] The First IEEE Conference on Control Applications.

[7]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[8]  H. Ying,et al.  Fuzzy control theory: The linear case , 1989 .

[9]  C. Hang,et al.  Refinements of the Ziegler-Nichols tuning formula , 1991 .

[10]  Tzuu-Hseng S. Li,et al.  GA-based fuzzy PI/PD controller for automotive active suspension system , 1999, IEEE Trans. Ind. Electron..

[11]  Guanrong Chen,et al.  Design and analysis of a fuzzy proportional-integral-derivative controller , 1996, Fuzzy Sets Syst..

[12]  Masayoshi Tomizuka,et al.  Fuzzy gain scheduling of PID controllers , 1993, IEEE Trans. Syst. Man Cybern..

[13]  George K. I. Mann,et al.  New methodology for analytical and optimal design of fuzzy PID controllers , 1999, IEEE Trans. Fuzzy Syst..

[14]  Benjamin C. Kuo,et al.  AUTOMATIC CONTROL SYSTEMS , 1962, Universum:Technical sciences.

[15]  Shiuh-Jer Huang,et al.  Fuzzy logic for constant force control of end milling , 1999, IEEE Trans. Ind. Electron..

[16]  Michael Reinfrank,et al.  An introduction to fuzzy control (2nd ed.) , 1996 .

[17]  George K. I. Mann,et al.  Analysis and performance evaluation of linear-like fuzzy PI and PID controllers , 1997, Proceedings of 6th International Fuzzy Systems Conference.

[18]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[19]  S. He,et al.  Fuzzy self-tuning of PID controllers , 1993 .

[20]  George K. I. Mann,et al.  Analysis of direct action fuzzy PID controller structures , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[21]  Michio Sugeno,et al.  An introductory survey of fuzzy control , 1985, Inf. Sci..

[22]  William Siler,et al.  Fuzzy control theory: A nonlinear case , 1990, Autom..

[23]  Konstantinos Kalpakis,et al.  Steiner-optimal data replication in tree networks with storage costs , 2001, Proceedings 2001 International Database Engineering and Applications Symposium.

[24]  Wilson J. Rugh,et al.  Analytical Framework for Gain Scheduling , 1990, 1990 American Control Conference.