Gurson model parameters for ductile fracture simulation in ASTM A992 steels

This study is concerned with the modelling the ductile fracture in ASTM A992 steels using the Gurson-Tvergaard-Needleman (GTN) model for high stress triaxiality regime. The GTN model for ASTM A992 structural steels is calibrated from the experiments performed on axisymmetrically notched tensile specimens. The experiments are designed to obtain a range of stress triaxiality and different fracture initiation locations. The non-uniqueness in the constitutive parameters of the GTN model is illustrated in this study. The choice of a unique set of GTN constitutive parameters is made by choosing the nucleation strain (e N ) as a material constant. The process of estimating this material specific nucleation strain is provided. All the other GTN model parameters corresponding to the material specific nucleation strain (e N ) are evaluated to best fit the experimental results. The calibrated GTN model is shown to predict the load displacement behaviour, ductility and fracture initiation locations in the notched specimens. The calibrated GTN parameters are used to successfully predict the ductility of structural components: (a) bars with a hole; (b) plate with reduced section and (c) plate with holes; that are typically found in structural engineering applications.

[1]  Jean-Baptiste Leblond,et al.  Approximate models for ductile metals containing non-spherical voids—Case of axisymmetric prolate ellipsoidal cavities , 1993 .

[2]  J. Toribio A fracture criterion for high-strength steel notched bars , 1997 .

[3]  Roberto Lacalle,et al.  Determination of the Gurson–Tvergaard damage model parameters for simulating small punch tests , 2010 .

[4]  J. Lemaître A CONTINUOUS DAMAGE MECHANICS MODEL FOR DUCTILE FRACTURE , 1985 .

[5]  Claudio Ruggieri,et al.  Micromechanics modelling of ductile fracture in tensile specimens using computational cells , 2003 .

[6]  J. G Blauel,et al.  Damage mechanics analysis (Gurson model) and experimental verification of the behaviour of a crack in a weld-cladded component , 1997 .

[7]  Kapil Khandelwal,et al.  Experimental Studies and Models for Ductile Fracture in ASTM A992 Steels at High Triaxiality , 2014 .

[8]  Nenad Gubeljak,et al.  Modelling of ductile fracture initiation in strength mismatched welded joint , 2008 .

[9]  A. Needleman,et al.  Analysis of the cup-cone fracture in a round tensile bar , 1984 .

[10]  John W. Hutchinson,et al.  Calibration procedures for a computational model of ductile fracture , 2010, Engineering Fracture Mechanics.

[11]  H. Wilsdorf Void initiation, growth, and coalescence in ductile fracture of metals , 1975 .

[12]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[13]  Kapil Khandelwal,et al.  A micromechanical model for ductile fracture prediction in ASTM A992 steels , 2013 .

[14]  K. S. Sivakumaran,et al.  True Stress-True Strain Models for Structural Steel Elements , 2011 .

[15]  Gregory G. Deierlein,et al.  Void Growth Model and Stress Modified Critical Strain Model to Predict Ductile Fracture in Structural Steels , 2006 .

[16]  M. K. Samal Nonlocal damage models for structural integrity analysis , 2007 .

[17]  Robert H. Dodds,et al.  Ductile tearing in part-through cracks: experiments and cell-model predictions , 1998 .

[18]  Sherif El-Tawil,et al.  Ductile Web Fracture Initiation in Steel Shear Links , 2006 .

[19]  Jean-Baptiste Leblond,et al.  Approximate Models for Ductile Metals Containing Nonspherical Voids—Case of Axisymmetric Oblate Ellipsoidal Cavities , 1994 .

[20]  V. Tvergaard On localization in ductile materials containing spherical voids , 1982, International Journal of Fracture.

[21]  Imad Barsoum,et al.  Rupture mechanisms in combined tension and shear—Micromechanics , 2007 .

[22]  Sherif El-Tawil,et al.  Collapse Behavior of Steel Special Moment Resisting Frame Connections , 2007 .

[23]  Viggo Tvergaard,et al.  VOID GROWTH AND FAILURE IN NOTCHED BARS , 1988 .

[24]  Thomas Pardoen,et al.  An extended model for void growth and coalescence - application to anisotropic ductile fracture , 2000 .

[25]  Abdellatif Imad,et al.  A ductile fracture analysis using a local damage model , 2008 .

[26]  Jacques Besson,et al.  Plastic potentials for anisotropic porous solids , 2001 .

[27]  Christian Thaulow,et al.  A complete Gurson model approach for ductile fracture , 2000 .

[28]  F. J. Belzunce,et al.  Analysis and modelisation of short crack growth by ductile fracture micromechanisms , 1997 .

[29]  Kostas Danas,et al.  Influence of the Lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials , 2012 .

[30]  Imad Barsoum,et al.  Rupture mechanisms in combined tension and shear : Experiments , 2007 .

[31]  Thomas Siegmund,et al.  The Role of Cohesive Strength and Separation Energy for Modeling of Ductile Fracture , 2000 .

[32]  Bjørn Skallerud,et al.  A 3D numerical study of ductile tearing and fatigue crack growth under nominal cyclic plasticity , 1997 .

[33]  G. Rousselier,et al.  Ductile fracture models and their potential in local approach of fracture , 1987 .

[34]  Hiroshi Akiyama,et al.  Brittle fracture under repeated high stresses , 1994 .

[35]  F. A. McClintock,et al.  A Criterion for Ductile Fracture by the Growth of Holes , 1968 .

[36]  D. M. Tracey,et al.  On the ductile enlargement of voids in triaxial stress fields , 1969 .

[37]  Wolfgang Brocks,et al.  Verification of micromechanical models for ductile fracture by cell model calculations , 1996 .

[38]  Hitoshi Kuwamura,et al.  Transition between Fatigue and Ductile Fracture in Steel , 1997 .

[39]  Hitoshi Kuwamura,et al.  Ductile Crack as Trigger of Brittle Fracture in Steel , 1997 .