Improving Lemmatization of Non-Standard Languages with Joint Learning
暂无分享,去创建一个
[1] Yoshua Bengio,et al. On the Properties of Neural Machine Translation: Encoder–Decoder Approaches , 2014, SSST@EMNLP.
[2] Roland Vollgraf,et al. Contextual String Embeddings for Sequence Labeling , 2018, COLING.
[3] Emmanuel Dupoux,et al. Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies , 2016, TACL.
[4] Yonatan Belinkov,et al. Fine-grained Analysis of Sentence Embeddings Using Auxiliary Prediction Tasks , 2016, ICLR.
[5] Michael Piotrowski,et al. Natural Language Processing for Historical Texts , 2012, Synthesis Lectures on Human Language Technologies.
[6] Matti Lassila,et al. Abbreviations, fragmentary words, formulaic language: treebanking mediaeval charter material , 2013 .
[7] Yoshua Bengio,et al. Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.
[8] David Crystal,et al. Language and the Internet , 2001 .
[9] Tanja Samardzic,et al. Lemmatisation as a Tagging Task , 2012, ACL.
[10] Hans van Halteren,et al. Dealing with orthographic variation in a tagger-lemmatizer for fourteenth century Dutch charters , 2013, Lang. Resour. Evaluation.
[11] Daniel Kondratyuk,et al. LemmaTag: Jointly Tagging and Lemmatizing for Morphologically-Rich Languages with BRNNs , 2018, EMNLP.
[12] Walter Daelemans,et al. Lemmatization for variation-rich languages using deep learning , 2016, Digit. Scholarsh. Humanit..
[13] Rich Caruana,et al. Multitask Learning , 1997, Machine-mediated learning.
[14] Pieter van Reenen,et al. Een gegevensbank van 14de-eeuwse Middelnederlandse dialecten op computer , 2013 .
[15] Alexander Mehler,et al. Lemmatization and Morphological Tagging in German and Latin: A Comparison and a Survey of the State-of-the-art , 2016, LREC.
[16] Tomaž Erjavec. Reference corpus of historical Slovene goo300k 1.2 , 2015 .
[17] Josef van Genabith,et al. Learning Morphology with Morfette , 2008, LREC.
[18] Sebastian Ruder,et al. Universal Language Model Fine-tuning for Text Classification , 2018, ACL.
[19] Joakim Nivre,et al. A Multilingual Evaluation of Three Spelling Normalisation Methods for Historical Text , 2014, LaTeCH@EACL.
[20] Walter Daelemans,et al. Multimodular Text Normalization of Dutch User-Generated Content , 2016, ACM Trans. Intell. Syst. Technol..
[21] Joakim Nivre,et al. An Evaluation of Neural Machine Translation Models on Historical Spelling Normalization , 2018, COLING.
[22] Sharon Goldwater,et al. Context Sensitive Neural Lemmatization with Lematus , 2018, NAACL-HLT.
[23] Dirk Hovy,et al. What’s in a p-value in NLP? , 2014, CoNLL.
[24] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[25] Nitish Srivastava,et al. Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..
[26] Zoubin Ghahramani,et al. A Theoretically Grounded Application of Dropout in Recurrent Neural Networks , 2015, NIPS.
[27] Luke S. Zettlemoyer,et al. Deep Contextualized Word Representations , 2018, NAACL.
[28] Sampo Pyysalo,et al. Universal Dependencies v1: A Multilingual Treebank Collection , 2016, LREC.
[29] Zuraidah Mohd Don,et al. The notion of a “lemma”: Headwords, roots and lexical sets , 2004 .
[30] Alexander M. Fraser,et al. Joint Lemmatization and Morphological Tagging with Lemming , 2015, EMNLP.
[31] Oksana Dereza,et al. Lemmatization for Ancient Languages: Rules or Neural Networks? , 2018, AINL 2018.
[32] Fabian Barteld,et al. Das Referenzkorpus Mittelniederdeutsch/Niederrheinisch (1200–1650) – Korpusdesign, Korpuserstellung und Korpusnutzung , 2017 .
[33] Utpal Garain,et al. Context Sensitive Lemmatization Using Two Successive Bidirectional Gated Recurrent Networks , 2017, ACL.
[34] Anders Søgaard,et al. Improving historical spelling normalization with bi-directional LSTMs and multi-task learning , 2016, COLING.