De Finettian Logics of Indicative Conditionals Part II: Proof Theory and Algebraic Semantics

In Part I of this paper, we identified and compared various schemes for trivalent truth conditions for indicative conditionals, most notably the proposals by de Finetti (1936) and Reichenbach (1935, 1944) on the one hand, and by Cooper (Inquiry, 11, 295–320, 1968) and Cantwell (Notre Dame Journal of Formal Logic, 49, 245–260, 2008) on the other. Here we provide the proof theory for the resulting logics and , using tableau calculi and sequent calculi, and proving soundness and completeness results. Then we turn to the algebraic semantics, where both logics have substantive limitations: allows for algebraic completeness, but not for the construction of a canonical model, while fails the construction of a Lindenbaum-Tarski algebra. With these results in mind, we draw up the balance and sketch future research projects.

[1]  David E. Over,et al.  Uncertainty and the de Finetti tables , 2013 .

[2]  J. Beall Spandrels of Truth , 2009 .

[3]  Two Sides of Modus Ponens , 2018 .

[4]  Matthew Mandelkern,et al.  Import‐Export and ‘And’ , 2018, Philosophy and Phenomenological Research.

[5]  Philip G. Calabrese,et al.  Deduction with uncertain conditionals , 2002, Inf. Sci..

[6]  Vann McGee A Counterexample to Modus Ponens , 1985 .

[7]  David Ripley,et al.  CONSERVATIVELY EXTENDING CLASSICAL LOGIC WITH TRANSPARENT TRUTH , 2012, The Review of Symbolic Logic.

[8]  William S. Cooper,et al.  The propositional logic of ordinary discourse1 , 1968 .

[9]  B. Herrmann Equivalential and algebraizable logics , 1996 .

[10]  D. Over,et al.  The Psychology of Uncertainty and Three-Valued Truth Tables , 2018, Front. Psychol..

[11]  Florencio G. Asenjo,et al.  A calculus of antinomies , 1966, Notre Dame J. Formal Log..

[12]  John Cantwell,et al.  The Logic of Conditional Negation , 2008, Notre Dame J. Formal Log..

[13]  E. W. Adams,et al.  The logic of conditionals , 1975 .

[14]  Kurt Schütte,et al.  Ein System des Verknüpfenden Schliessens , 1956, Arch. Math. Log..

[15]  Robert J. Farrell,et al.  Material implication, confirmation, and counterfactuals , 1979, Notre Dame J. Formal Log..

[16]  D. Dubois,et al.  Conditional Objects as Nonmonotonic Consequence Relationships , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[17]  Alexej P. Pynko On Priest's logic of paradox , 1995, J. Appl. Non Class. Logics.

[18]  Dorothy Edgington,et al.  Matter-of-Fact Conditionals , 1991 .

[19]  Graham Priest,et al.  The logic of paradox , 1979, J. Philos. Log..

[20]  Richard C. Jeffrey,et al.  On indeterminate conditionals , 1963 .

[21]  Peter Milne,et al.  Algebras of Intervals and a Logic of Conditional Assertions , 2004, J. Philos. Log..

[22]  Helmut Schwichtenberg,et al.  Basic proof theory , 1996, Cambridge tracts in theoretical computer science.