Multi-dimensional genomic analysis of myoepithelial carcinoma identifies prevalent oncogenic gene fusions

[1]  Md Abu Shufean,et al.  ALK: a tyrosine kinase target for cancer therapy , 2017, Cold Spring Harbor molecular case studies.

[2]  Helen Y Wang,et al.  Immune targets and neoantigens for cancer immunotherapy and precision medicine , 2016, Cell Research.

[3]  V. Seshan,et al.  FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing , 2016, Nucleic acids research.

[4]  G. Stenman,et al.  The landscape of gene fusions and somatic mutations in salivary gland neoplasms - Implications for diagnosis and therapy. , 2016, Oral oncology.

[5]  N. Schultz,et al.  Comprehensive Molecular Characterization of Salivary Duct Carcinoma Reveals Actionable Targets and Similarity to Apocrine Breast Cancer , 2016, Clinical Cancer Research.

[6]  T. Day,et al.  Prognostic Factors in Myoepithelial Carcinoma of the Major Salivary Glands , 2016, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[7]  Morten Nielsen,et al.  Gapped sequence alignment using artificial neural networks: application to the MHC class I system , 2016, Bioinform..

[8]  W. V. D. Van de Ven,et al.  Emerging role of PLAG1 as a regulator of growth and reproduction. , 2016, The Journal of endocrinology.

[9]  J. Reis-Filho,et al.  Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival , 2016, Oncotarget.

[10]  R. Fulton,et al.  INTEGRATE: gene fusion discovery using whole genome and transcriptome data , 2016, Genome research.

[11]  C. Antonescu,et al.  Thoracic Myoepithelial Tumors: A Pathologic and Molecular Study of 8 Cases With Review of the Literature , 2015, The American journal of surgical pathology.

[12]  G. Blobe,et al.  TβRIII independently binds type I and type II TGF-β receptors to inhibit TGF-β signaling , 2015, Molecular biology of the cell.

[13]  M. Gonen,et al.  Prognostic Factors in Myoepithelial Carcinoma of Salivary Glands: A Clinicopathologic Study of 48 Cases , 2015, The American journal of surgical pathology.

[14]  B. Vogelstein,et al.  PD-1 blockade in tumors with mismatch repair deficiency. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[15]  Martin L. Miller,et al.  Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer , 2015, Science.

[16]  A. Agaimy,et al.  Clear Cell Myoepithelial Carcinoma of Salivary Glands Showing EWSR1 Rearrangement: Molecular Analysis of 94 Salivary Gland Carcinomas With Prominent Clear Cell Component , 2015, The American journal of surgical pathology.

[17]  Steven J. M. Jones,et al.  Comprehensive genomic characterization of head and neck squamous cell carcinomas , 2015, Nature.

[18]  J. Wolchok,et al.  Genetic basis for clinical response to CTLA-4 blockade in melanoma. , 2014, The New England journal of medicine.

[19]  L. Aaltonen,et al.  Genomics of uterine leiomyomas: insights from high-throughput sequencing. , 2014, Fertility and sterility.

[20]  H. Moses,et al.  Transforming growth factor beta receptor type III is a tumor promoter in mesenchymal-stem like triple negative breast cancer , 2014, Breast Cancer Research.

[21]  O. Griffith,et al.  Mitelman Database (Chromosome Aberrations and Gene Fusions in Cancer) , 2014 .

[22]  A. Bouchard-Côté,et al.  PyClone: statistical inference of clonal population structure in cancer , 2014, Nature Methods.

[23]  I. Weinreb Translocation-associated Salivary Gland Tumors: A Review and Update , 2013, Advances in anatomic pathology.

[24]  Dong-rong Yang,et al.  Dual role of TGFBR3 in bladder cancer. , 2013, Oncology reports.

[25]  B. Perez-Ordonez,et al.  An analysis of PLAG1 and HMGA2 rearrangements in salivary duct carcinoma and examination of the role of precursor lesions , 2013, Histopathology.

[26]  M. Rubin,et al.  Novel YAP1‐TFE3 fusion defines a distinct subset of epithelioid hemangioendothelioma , 2013, Genes, chromosomes & cancer.

[27]  G. Stenman Fusion Oncogenes in Salivary Gland Tumors: Molecular and Clinical Consequences , 2013, Head and Neck Pathology.

[28]  C. Antonescu,et al.  Frequent PLAG1 gene rearrangements in skin and soft tissue myoepithelioma with ductal differentiation , 2013, Genes, chromosomes & cancer.

[29]  Michael Thomas,et al.  Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. , 2013, The New England journal of medicine.

[30]  Benjamin J. Raphael,et al.  The Mutational Landscape of Adenoid Cystic Carcinoma , 2013, Nature Genetics.

[31]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[32]  A. Sivachenko,et al.  Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples , 2013, Nature Biotechnology.

[33]  Richard A. Moore,et al.  Derivation of HLA types from shotgun sequence datasets , 2012, Genome Medicine.

[34]  G. Abecasis,et al.  Detecting and estimating contamination of human DNA samples in sequencing and array-based genotype data. , 2012, American journal of human genetics.

[35]  Wendy S. W. Wong,et al.  Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs , 2012, Bioinform..

[36]  B. Tops,et al.  EWSR1-ATF1 chimeric transcript in a myoepithelial tumor of soft tissue: a case report. , 2012, Human pathology.

[37]  A. Bahrami,et al.  PLAG1 Alteration in Carcinoma Ex Pleomorphic Adenoma: Immunohistochemical and Fluorescence In Situ Hybridization Studies of 22 Cases , 2012, Head and Neck Pathology.

[38]  Christopher A. Miller,et al.  VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. , 2012, Genome research.

[39]  Ken Chen,et al.  SomaticSniper: identification of somatic point mutations in whole genome sequencing data , 2012, Bioinform..

[40]  T. Furuya,et al.  Loss of 6q or 8p23 is associated with the total number of DNA copy number aberrations in adenoid cystic carcinoma. , 2011, Oncology reports.

[41]  J. Akey Analysis of 2,440 human exomes highlights the evolution and functional impact of rare coding variation , 2011, Genome Biology.

[42]  Michael L. Gatza,et al.  Type III TGF-β receptor enhances colon cancer cell migration and anchorage-independent growth. , 2011, Neoplasia.

[43]  C. Antonescu,et al.  EWSR1‐ATF1 fusion is a novel and consistent finding in hyalinizing clear‐cell carcinoma of salivary gland , 2011, Genes, chromosomes & cancer.

[44]  Süleyman Cenk Sahinalp,et al.  deFuse: An Algorithm for Gene Fusion Discovery in Tumor RNA-Seq Data , 2011, PLoS Comput. Biol..

[45]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[46]  H. Hashimoto,et al.  Aberrant PLAG1 expression in pleomorphic adenomas of the salivary gland: a molecular genetic and immunohistochemical study , 2011, Virchows Archiv.

[47]  C. Antonescu,et al.  EWSR1‐POU5F1 fusion in soft tissue myoepithelial tumors. A molecular analysis of sixty‐six cases, including soft tissue, bone, and visceral lesions, showing common involvement of the EWSR1 gene , 2010, Genes, chromosomes & cancer.

[48]  D. Gomez,et al.  Prognostic factors of recurrence in salivary carcinoma ex pleomorphic adenoma, with emphasis on the carcinoma histologic subtype: a clinicopathologic study of 43 cases. , 2010, Human pathology.

[49]  R. Xu,et al.  Molecular classification of soft tissue sarcomas and its clinical applications. , 2010, International journal of clinical and experimental pathology.

[50]  J. Bullerdiek,et al.  Loss of let-7 binding sites resulting from truncations of the 3' untranslated region of HMGA2 mRNA in uterine leiomyomas. , 2010, Cancer genetics and cytogenetics.

[51]  Gary D Bader,et al.  NetPath: a public resource of curated signal transduction pathways , 2010, Genome Biology.

[52]  K. Kok,et al.  Copy number gain at 8q12.1‐q22.1 is associated with a malignant tumor phenotype in salivary gland myoepitheliomas , 2009, Genes, chromosomes & cancer.

[53]  F. Persson,et al.  High‐resolution genomic profiling of adenomas and carcinomas of the salivary glands reveals amplification, rearrangement, and fusion of HMGA2 , 2009, Genes, chromosomes & cancer.

[54]  J. Staaf,et al.  Heterogeneous genetic profiles in soft tissue myoepitheliomas , 2008, Modern Pathology.

[55]  F. Enlund,et al.  High-resolution array CGH analysis of salivary gland tumors reveals fusion and amplification of the FGFR1 and PLAG1 genes in ring chromosomes , 2008, Oncogene.

[56]  W. V. D. Van de Ven,et al.  Upregulation of Igf and Wnt signalling associated genes in pleomorphic adenomas of the salivary glands in PLAG1 transgenic mice. , 2008, International journal of oncology.

[57]  A. Fusco,et al.  Roles of HMGA proteins in cancer , 2007, Nature Reviews Cancer.

[58]  A. Reis,et al.  WIF1, an inhibitor of the Wnt pathway, is rearranged in salivary gland tumors , 2007, Genes, chromosomes & cancer.

[59]  A. Abdollahi LOT1 (ZAC1/PLAGL1) and its family members: Mechanisms and functions , 2007, Journal of cellular physiology.

[60]  C. Moskaluk,et al.  Chromosome 6 deletion and candidate tumor suppressor genes in adenoid cystic carcinoma. , 2006, Cancer letters.

[61]  I. Fonseca,et al.  PLAG1 gene alterations in salivary gland pleomorphic adenoma and carcinoma ex-pleomorphic adenoma: a combined study using chromosome banding, in situ hybridization and immunocytochemistry , 2005, Modern Pathology.

[62]  W. V. D. Van de Ven,et al.  Salivary gland tumors in transgenic mice with targeted PLAG1 proto-oncogene overexpression. , 2005, Cancer research.

[63]  F. Enlund,et al.  Molecular analyses of the candidate tumor suppressor gene, PLAGL1, in benign and malignant salivary gland tumors. , 2004, European journal of oral sciences.

[64]  E. Campo,et al.  Heterogeneity of genomic breakpoints in MSN-ALK translocations in anaplastic large cell lymphoma. , 2004, Human Pathology.

[65]  W. V. D. Van de Ven,et al.  The tumorigenic diversity of the three PLAG family members is associated with different DNA binding capacities. , 2002, Cancer research.

[66]  E. Campo,et al.  Molecular Characterization of a New ALK Translocation Involving Moesin (MSN-ALK) in Anaplastic Large Cell Lymphoma , 2001, Laboratory Investigation.

[67]  A. Huvos,et al.  Myoepithelial carcinoma of the salivary glands: a clinicopathologic study of 25 patients. , 2000, The American journal of surgical pathology.

[68]  W. V. D. Van de Ven,et al.  Conserved mechanism of PLAG1 activation in salivary gland tumors with and without chromosome 8q12 abnormalities: identification of SII as a new fusion partner gene. , 1999, Cancer research.

[69]  E. Schoenmakers,et al.  Identification of NFIB as recurrent translocation partner gene of HMGIC in pleomorphic adenomas , 1998, Oncogene.

[70]  M. Lovett,et al.  A refined localization of two deleted regions in chromosome 6q associated with salivary gland carcinomas , 1998, Oncogene.

[71]  K. Kas,et al.  Promoter swapping between the genes for a novel zinc finger protein and β-catenin in pleiomorphic adenomas with t(3;8)(p21;q12) translocations , 1997, Nature Genetics.

[72]  W. Travis,et al.  Pulmonary Langerhans Cell Granulomatosis (Histiocytosis X) A Clinicopathologic Study of 48 Cases , 1993, The American journal of surgical pathology.

[73]  A. Lowenfels A REVIEW AND UPDATE , 1979 .

[74]  K. D. Devine,et al.  A clinicopathologic study of 43 cases of glandular tumors of the tongue. , 1959, Surgery, gynecology & obstetrics.

[75]  G W Nicholson,et al.  ON TUMORS OF THE SALIVARY GLANDS. , 1918, Annals of surgery.

[76]  Xingli Dong,et al.  Type III TGF-β receptor inhibits cell proliferation and migration in salivary glands adenoid cystic carcinoma by suppressing NF-κB signaling. , 2016, Oncology reports.

[77]  Kazutaka Yamada,et al.  Carcinoma Associated with Anal Fistula: A Clinicopathologic Study of 25 Patients , 2016 .

[78]  C. Antonescu,et al.  Consistent PLAG1 and HMGA2 abnormalities distinguish carcinoma ex-pleomorphic adenoma from its de novo counterparts. , 2015, Human pathology.

[79]  Carlos Caldas,et al.  Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells , 2015, Genome research.

[80]  J. Wolchok,et al.  Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma. , 2015, The New England journal of medicine.

[81]  F. Mitelman A Short History of Chromosome Rearrangements and Gene Fusions in Cancer , 2015 .

[82]  P. Damdimopoulou,et al.  Emerging role of PLAG 1 as a regulator of growth and reproduction , 2015 .

[83]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer genes , 2014 .

[84]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[85]  Dong-rong Yang,et al.  Dual role of TGFBR 3 in bladder cancer , 2013 .

[86]  T. Furuya,et al.  Loss of 6 q or 8 p 23 is associated with the total number of DNA copy number aberrations in adenoid cystic carcinoma , 2011 .

[87]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..

[88]  L. Barnes,et al.  Pathology and genetics of head and neck tumours , 2005 .

[89]  N. Mandahl,et al.  Identification of SII as a New Fusion Partner Gene Tumors with and without Chromosome 8 q 12 Abnormalities : Activation in Salivary Gland PLAG 1 Conserved Mechanism of Updated , 1999 .

[90]  D. C. Henckel,et al.  Case report. , 1995, Journal.

[91]  David P. Bartel,et al.  Supporting Online Material Materials and Methods Fig. S1 Tables S1 and S2 References Database S1 Disrupting the Pairing between Let-7 and Hmga2 Enhances Oncogenic Transformation , 2022 .