A gold–silicon potential fitted to the binary phase diagram

We develop an empirical interatomic potential model for the gold-silicon binary system that is fitted to the experimental phase diagram. The model is constructed on the basis of the modified embedded-atom-method formalism and its binary phase diagram is computed by efficient free energy methods. The eutectic temperature and eutectic composition of the model match well with the experimental values. We expect the model to be useful for atomistic simulations of gold-catalyzed growth of silicon nanowires.

[1]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[2]  Fei Ma,et al.  Calculation of the surface energy of fcc metals with modified embedded-atom method , 2004 .

[3]  P. Clancy,et al.  Melting and freezing characteristics and structural properties of supported and unsupported gold nanoclusters. , 2005, The journal of physical chemistry. B.

[4]  H. Okamoto,et al.  The Au−Si (Gold-Silicon) system , 1983 .

[5]  Volker Schmidt,et al.  Diameter dependence of the growth velocity of silicon nanowires synthesized via the vapor-liquid-solid mechanism , 2007 .

[6]  L. Malerba,et al.  Interatomic potentials consistent with thermodynamics: The Fe–Cu system , 2007 .

[7]  Byeong-Joo Lee,et al.  A semi-empirical interatomic potential for the Cu-Ti binary system , 2007 .

[8]  N. V. Sibirev,et al.  Theoretical analysis of the vapor-liquid-solid mechanism of nanowire growth during molecular beam epitaxy. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  M. Hove,et al.  Quantitative prediction of surface segregation in bimetallic Pt–M alloy nanoparticles (M = Ni, Re, Mo) , 2005 .

[10]  Hemant Adhikari,et al.  Germanium nanowire epitaxy: shape and orientation control. , 2006, Nano letters.

[11]  R. Phillips,et al.  Crystals, Defects and Microstructures: Modeling Across Scales , 2001 .

[12]  J. Luyten,et al.  Segregation and ordering at alloys surfaces: modelling and experiment confronted , 2003 .

[13]  J. Tersoff,et al.  New empirical model for the structural properties of silicon. , 1986, Physical review letters.

[14]  M. Baskes,et al.  Modified embedded-atom potentials for cubic materials and impurities. , 1992, Physical review. B, Condensed matter.

[15]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[16]  P. Clancy,et al.  MEAM molecular dynamics study of a gold thin film on a silicon substrate , 2004 .

[17]  H.-S. Philip Wong Beyond the conventional transistor , 2002, IBM J. Res. Dev..

[18]  Joshua R. Smith,et al.  Universal features of the equation of state of metals , 1984 .

[19]  Watanabe,et al.  Direct dynamical calculation of entropy and free energy by adiabatic switching. , 1990, Physical review letters.

[20]  Cook,et al.  Comparison of semi-empirical potential functions for silicon and germanium. , 1993, Physical review. B, Condensed matter.

[21]  Sidney Yip,et al.  Optimized free-energy evaluation using a single reversible-scaling simulation , 1999 .

[22]  B. Wirth,et al.  Modified embedded-atom method interatomic potential for the Fe-Cu alloy system and cascade simulations on pure Fe and Fe-Cu alloys , 2005 .

[23]  V. Dubrovskii,et al.  Growth thermodynamics of nanowires and its application to polytypism of zinc blende III-V nanowires , 2008 .

[24]  P. McIntyre,et al.  Conditions for subeutectic growth of Ge nanowires by the vapor-liquid-solid mechanism , 2007 .

[25]  Nelson,et al.  Semiempirical modified embedded-atom potentials for silicon and germanium. , 1989, Physical review. B, Condensed matter.

[26]  M. Baskes,et al.  Application of the embedded-atom method to covalent materials: A semiempirical potential for silicon. , 1987, Physical review letters.

[27]  Giovanni Ciccotti,et al.  Introduction of Andersen’s demon in the molecular dynamics of systems with constraints , 1983 .

[28]  R. Chastel,et al.  Etude thermodynamique du système AuSi , 1978 .

[29]  S. Russo,et al.  “Exact” surface free energies of iron surfaces using a modified embedded atom method potential and λ integration , 2004 .

[30]  M. Baskes,et al.  Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method , 2003 .

[31]  Seunghwa Ryu,et al.  Comparison of thermal properties predicted by interatomic potential models , 2008 .

[32]  Seunghwa Ryu,et al.  Improved modified embedded-atom method potentials for gold and silicon , 2009 .

[33]  M. Baskes,et al.  Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals , 1983 .

[34]  D. Crowson,et al.  Classical many-body potential for concentrated alloys and the inversion of order in iron-chromium alloys. , 2005, Physical review letters.

[35]  C. Kittel Introduction to solid state physics , 1954 .