Learning from data to design functional materials without inversion symmetry

Accelerating the search for functional materials is a challenging problem. Here we develop an informatics-guided ab initio approach to accelerate the design and discovery of noncentrosymmetric materials. The workflow integrates group theory, informatics and density-functional theory to uncover design guidelines for predicting noncentrosymmetric compounds, which we apply to layered Ruddlesden-Popper oxides. Group theory identifies how configurations of oxygen octahedral rotation patterns, ordered cation arrangements and their interplay break inversion symmetry, while informatics tools learn from available data to select candidate compositions that fulfil the group-theoretical postulates. Our key outcome is the identification of 242 compositions after screening ∼3,200 that show potential for noncentrosymmetric structures, a 25-fold increase in the projected number of known noncentrosymmetric Ruddlesden-Popper oxides. We validate our predictions for 19 compounds using phonon calculations, among which 17 have noncentrosymmetric ground states including two potential multiferroics. Our approach enables rational design of materials with targeted crystal symmetries and functionalities.

[1]  David J. Singh,et al.  Tuning Optical Properties of Transparent Conducting Barium Stannate by Dimensional Reduction , 2015, 1502.00171.

[2]  J. Dunitz,et al.  Towards a Grammar of Crystal Packing , 1994 .

[3]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[4]  M. A. Señarís-Rodríguez,et al.  Synthesis, structure and microstructure of the layered compounds Ln1−xSr1+xCoO4 (Ln: La, Nd and Gd) , 2004 .

[5]  A. D. Corso Pseudopotentials periodic table: From H to Pu , 2014 .

[6]  M. Marques,et al.  Stability and electronic properties of new inorganic perovskites from high-throughput ab initio calculations , 2016 .

[7]  鳩山 道夫,et al.  Materials Research Bulletinについて , 1967 .

[8]  P. Lightfoot,et al.  Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments. , 2015, Dalton transactions.

[9]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  Hyung J. Kim,et al.  Physical properties of transparent perovskite oxides (Ba,La)SnO 3 with high electrical mobility at room temperature , 2012, 1207.0764.

[11]  P. Balachandran,et al.  Polar Cation Ordering: A Route to Introducing >10% Bond Strain Into Layered Oxide Films , 2014 .

[12]  C. Jin,et al.  High-pressure and high-temperature synthesis and physical properties of Ca2CrO4 solid , 2016 .

[13]  Y. Maeno,et al.  Metal–insulator transitions in layered ruthenates , 1999 .

[14]  G. Haertling Ferroelectric ceramics : History and technology , 1999 .

[15]  Loris Nanni,et al.  Coupling different methods for overcoming the class imbalance problem , 2015, Neurocomputing.

[16]  G. L. Flem,et al.  Un oxyde magnetique bidimensionnel: CaLaFeO4 , 1980 .

[17]  C. Fennie,et al.  Polar metals by geometric design , 2016, Nature.

[18]  Zhuo Xu,et al.  Ruddleson-Popper phase SnO(SnTiO3)n: Lead-free layered ferroelectric materials with large spontaneous polarization , 2014 .

[19]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[20]  D. Sholl,et al.  Chiral selection on inorganic crystalline surfaces , 2003, Nature materials.

[21]  A. Zunger,et al.  Diagrammatic Separation of Different Crystal Structures of A2BX4 Compounds Without Energy Minimization: A Pseudopotential Orbital Radii Approach , 2010 .

[22]  S. P. Fletcher,et al.  Building blocks of life: Growing the seeds of homochirality. , 2009, Nature chemistry.

[23]  James Theiler,et al.  Accelerated search for materials with targeted properties by adaptive design , 2016, Nature Communications.

[24]  V BalachandranPrasanna,et al.  Learning from Data to Design Functional Materials without Inversion Symmetry (CIF files) , 2016 .

[25]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[26]  Danilo Puggioni,et al.  Crystal-chemistry guidelines for noncentrosymmetric A2BO4 Ruddlesden-Popper oxides. , 2014, Inorganic chemistry.

[27]  Krishna Rajan,et al.  Identifying the ‘inorganic gene’ for high-temperature piezoelectric perovskites through statistical learning , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  T. Lookman,et al.  Structure–Curie temperature relationships in BaTiO 3 -based ferroelectric perovskites: Anomalous behavior of ( Ba , Cd ) TiO 3 from DFT, statistical inference, and experiments , 2016 .

[29]  First-principles investigation of ferroelectricity in epitaxially strained Pb 2 Ti O 4 , 2005, cond-mat/0501121.

[30]  J. Hlinka,et al.  Symmetry Guide to Ferroaxial Transitions. , 2016, Physical review letters.

[31]  David Avnir,et al.  Quantitative Symmetry and Chirality of the Molecular Building Blocks of Quartz , 2003 .

[32]  P. Halasyamani Asymmetric Cation Coordination in Oxide Materials: Influence of Lone-Pair Cations on the Intra-octahedral Distortion in d0 Transition Metals , 2004 .

[33]  James M. Rondinelli,et al.  Research Update: Towards designed functionalities in oxide-based electronic materials , 2015 .

[34]  Liping Yu,et al.  Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. , 2014, Nature chemistry.

[35]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[36]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[37]  J. Vybíral,et al.  Big data of materials science: critical role of the descriptor. , 2014, Physical review letters.

[38]  K. Fujii,et al.  New Perovskite-Related Structure Family of Oxide-Ion Conducting Materials NdBaInO4 , 2014 .

[39]  J. M. Perez-Mato,et al.  Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies , 2003 .

[40]  David Vanderbilt,et al.  Half-Heusler semiconductors as piezoelectrics. , 2011, Physical review letters.

[41]  F. Bechstedt,et al.  Linear optical properties in the projector-augmented wave methodology , 2006 .

[42]  A. Cammarata,et al.  Inductive crystal field control in layered metal oxides with correlated electrons , 2014 .

[43]  Y. Okimoto,et al.  Change of electronic structure in Ca2RuO4 induced by orbital ordering. , 2003, Physical review letters.

[44]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[45]  M. Gruninger,et al.  Temperature-dependent optical conductivity of layered LaSrFeO4 , 2013, 1303.0709.

[46]  Brown,et al.  Structural and magnetization density studies of La2NiO4. , 1989, Physical review. B, Condensed matter.

[47]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[48]  Wade Babcock,et al.  Computational materials science , 2004 .

[49]  A. Müller Journal of Physics Condensed Matter , 2008 .

[50]  Christopher M Wolverton,et al.  First‐Principles Determination of Multicomponent Hydride Phase Diagrams: Application to the Li‐Mg‐N‐H System , 2007 .

[51]  大橋 裕二,et al.  Acta Crystallographica に Section E を新設 , 2000 .

[52]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[53]  M. Castro,et al.  Phase transitions and magnetic behaviour of R1−xCa1+xCrO4 oxides (RY or Sm) (0⩽x⩽0.5) , 1995 .

[54]  Katsuhisa Tanaka,et al.  Improper Inversion Symmetry Breaking and Piezoelectricity through Oxygen Octahedral Rotations in Layered Perovskite Family, LiRTiO4 (R = Rare Earths) , 2016 .

[55]  S. Sanvito,et al.  Electronic properties of bulk and thin film SrRuO 3 : Search for the metal-insulator transition , 2008, 0806.1315.

[56]  N. Benedek,et al.  ‘Ferroelectric’ metals reexamined: fundamental mechanisms and design considerations for new materials , 2015, 1511.06187.

[57]  P. Balachandran,et al.  Massive band gap variation in layered oxides through cation ordering , 2015, Nature Communications.

[58]  C. Fennie,et al.  Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. , 2011, Physical review letters.

[59]  D. Cromer,et al.  Orbital Radii of Atoms and Ions , 1965 .

[60]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[61]  S. Alvarez,et al.  Distortions in octahedrally coordinated d0 transition metal oxides : A continuous symmetry measures approach , 2006 .

[62]  A. Cammarata,et al.  Ferroelectricity from coupled cooperative Jahn-Teller distortions and octahedral rotations in ordered Ruddlesden-Popper manganates , 2015 .

[63]  K. Müller,et al.  SrTi O 3 : An intrinsic quantum paraelectric below 4 K , 1979 .

[64]  H. D. Yang,et al.  Crystal structure and physical properties of Cr and Mn oxides with 3d3 electronic configuration and a K2NiF4-type structure , 2015 .

[65]  James Theiler,et al.  Materials Prediction via Classification Learning , 2015, Scientific Reports.

[66]  Baroni,et al.  Ab initio calculation of the low-frequency Raman cross section in silicon. , 1986, Physical review. B, Condensed matter.

[67]  Katsuhisa Tanaka,et al.  Inversion symmetry breaking by oxygen octahedral rotations in the Ruddlesden-Popper NaRTiO4 family. , 2014, Physical review letters.

[68]  S. N. Ruddlesden,et al.  New compounds of the K2NIF4 type , 1957 .

[69]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[70]  C. Fennie,et al.  Interface control of emergent ferroic order in Ruddlesden-Popper Sr(n+1)Ti(n)O(3n+1). , 2011, Physical review letters.

[71]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[72]  F. Lechermann,et al.  Nature of the Mott transition in Ca2RuO4. , 2010, Physical review letters.

[73]  Pierre Geurts,et al.  Supervised learning with decision tree-based methods in computational and systems biology. , 2009, Molecular bioSystems.