The Freezing Threshold for k-Colourings of a Random Graph

We determine the exact value of the freezing threshold, rfk, for k-colourings of a random graph when k≥ 14. We prove that for random graphs with density above rfk, almost every colouring is such that a linear number of vertices are frozen, meaning that their colour cannot be changed by a sequence of alterations whereby we change the colours of o(n) vertices at a time, always obtaining another proper colouring. When the density is below rfk, then almost every colouring is such that every vertex can be changed by a sequence of alterations where we change O(log n) vertices at a time. Frozen vertices are a key part of the clustering phenomena discovered using methods from statistical physics. The value of the freezing threshold was previously determined by the nonrigorous cavity method.

[1]  Béla Bollobás,et al.  Random Graphs , 1985 .

[2]  Ehud Friedgut,et al.  A Sharp Threshold for k-Colorability , 1999, Random Struct. Algorithms.

[3]  Michael Molloy,et al.  Almost all graphs with 2.522 n edges are not 3-colorable , 1999, Electron. J. Comb..

[4]  Federico Ricci-Tersenghi,et al.  On the solution-space geometry of random constraint satisfaction problems , 2006, STOC '06.

[5]  Guilhem Semerjian,et al.  The large deviations of the whitening process in random constraint satisfaction problems , 2016, ArXiv.

[6]  Colin McDiarmid,et al.  Topics in Chromatic Graph Theory: Colouring random graphs , 2015 .

[7]  Amin Coja-Oghlan A Better Algorithm for Random k-SAT , 2009, ICALP.

[8]  Andrea Montanari,et al.  Gibbs states and the set of solutions of random constraint satisfaction problems , 2006, Proceedings of the National Academy of Sciences.

[9]  Michael Molloy,et al.  The analysis of a list-coloring algorithm on a random graph , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[10]  Tony Johansson The giant component of the random bipartite graph , 2012 .

[11]  Richard M. Karp,et al.  The Transitive Closure of a Random Digraph , 1990, Random Struct. Algorithms.

[12]  Ulrich Voll,et al.  A novel giant-subgraph phase-transition in sparse random k-partite graphs , 2005, Discret. Appl. Math..

[13]  Guilhem Semerjian,et al.  On the Freezing of Variables in Random Constraint Satisfaction Problems , 2007, ArXiv.

[14]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[15]  C. Moore,et al.  Almost All Graphs of Degree 4 are 3-colorable , 2001 .

[16]  Amin Coja-Oghlan,et al.  On the chromatic number of random regular graphs , 2016, J. Comb. Theory, Ser. B.

[17]  M. Mézard,et al.  Reconstruction on Trees and Spin Glass Transition , 2005, cond-mat/0512295.

[18]  Cristopher Moore,et al.  Almost all graphs with average degree 4 are 3-colorable , 2002, STOC '02.

[19]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[20]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[21]  Yuval Peres,et al.  The threshold for random k-SAT is 2k (ln 2 - O(k)) , 2003, STOC '03.

[22]  B. Reed Graph Colouring and the Probabilistic Method , 2001 .

[23]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[24]  Florent Krzakala,et al.  A Landscape Analysis of Constraint Satisfaction Problems , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Florent Krzakala,et al.  Quiet Planting in the Locked Constraint Satisfaction Problems , 2009, SIAM J. Discret. Math..

[26]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[27]  Dimitris Achlioptas,et al.  THE THRESHOLD FOR RANDOM k-SAT IS 2k log 2 O(k) , 2004, FOCS 2004.

[28]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[29]  Amin Coja-Oghlan,et al.  On belief propagation guided decimation for random k-SAT , 2010, SODA '11.

[30]  Michael Molloy,et al.  The solution space geometry of random linear equations , 2011, Random Struct. Algorithms.

[31]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[32]  J. W. P. Hirschfeld,et al.  Thresholds for colourability and satisfiability in random graphs and boolean formulae , 2001 .

[33]  Andrea Montanari,et al.  Reconstruction for Models on Random Graphs , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[34]  Riccardo Zecchina,et al.  Survey propagation: An algorithm for satisfiability , 2002, Random Struct. Algorithms.

[35]  V. Bapst,et al.  The Condensation Phase Transition in Random Graph Coloring , 2016 .

[36]  Nicholas C. Wormald,et al.  Encores on Cores , 2006, Electron. J. Comb..

[37]  Florent Krzakala,et al.  Constraint optimization and landscapes , 2007, ArXiv.

[38]  Svante Janson,et al.  A simple solution to the k-core problem , 2007, Random Struct. Algorithms.

[39]  S. Kak Information, physics, and computation , 1996 .

[40]  Amin Coja-Oghlan,et al.  Planting Colourings Silently , 2014, Combinatorics, Probability and Computing.

[41]  Lenka Zdeborová,et al.  The condensation transition in random hypergraph 2-coloring , 2011, SODA.

[42]  D. Achlioptas,et al.  A sharp threshold for k-colorability , 1999 .

[43]  Florent Krzakala,et al.  Threshold values, stability analysis and high-q asymptotics for the coloring problem on random graphs , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Olivier Dubois,et al.  The 3-XORSAT threshold , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[45]  Lenka Zdeborová,et al.  Statistical Physics of Hard Optimization Problems , 2008, ArXiv.

[46]  Andrea Montanari,et al.  Reconstruction and Clustering in Random Constraint Satisfaction Problems , 2011, SIAM J. Discret. Math..

[47]  Uriel Feige,et al.  On the Diameter of the Set of Satisfying Assignments in Random Satisfiable k-CNF Formulas , 2011, SIAM J. Discret. Math..

[48]  Samuel Hetterich,et al.  Analysing Survey Propagation Guided Decimation on Random Formulas , 2016, ICALP.

[49]  Amin Coja-Oghlan,et al.  Algorithmic Barriers from Phase Transitions , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[50]  Béla Bollobás,et al.  Asymptotic normality of the size of the giant component via a random walk , 2012, J. Comb. Theory, Ser. B.

[51]  Lenka Zdeborová,et al.  Constraint satisfaction problems with isolated solutions are hard , 2008, ArXiv.

[52]  Amin Coja-Oghlan A Better Algorithm for Random k-SAT , 2010, SIAM J. Comput..

[53]  Mohammad R. Salavatipour,et al.  The resolution complexity of random constraint satisfaction problems , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[54]  Assaf Naor,et al.  The two possible values of the chromatic number of a random graph , 2004, STOC '04.

[55]  B. Bollobás The evolution of random graphs , 1984 .

[56]  Andrea Montanari,et al.  On the concentration of the number of solutions of random satisfiability formulas , 2010, Random Struct. Algorithms.

[57]  Riccardo Zecchina,et al.  Coloring random graphs , 2002, Physical review letters.

[58]  Madhu Sudan,et al.  Performance of Sequential Local Algorithms for the Random NAE-K-SAT Problem , 2017, SIAM J. Comput..

[59]  Joel H. Spencer,et al.  Sudden Emergence of a Giantk-Core in a Random Graph , 1996, J. Comb. Theory, Ser. B.

[60]  Amin Coja-Oghlan,et al.  On independent sets in random graphs , 2010, SODA '11.

[61]  Elchanan Mossel,et al.  Information flow on trees , 2001, math/0107033.

[62]  Giorgio Parisi,et al.  The backtracking survey propagation algorithm for solving random K-SAT problems , 2015, Nature Communications.

[63]  Amin Coja-Oghlan,et al.  Upper-Bounding the k-Colorability Threshold by Counting Covers , 2013, Electron. J. Comb..

[64]  Béla Bollobás,et al.  The phase transition in inhomogeneous random graphs , 2007, Random Struct. Algorithms.

[65]  Benny Sudakov,et al.  On the Random Satisfiable Process , 2008, Combinatorics, Probability and Computing.

[66]  Michael Molloy,et al.  A Dichotomy Theorem for the Resolution Complexity of Random Constraint Satisfaction Problems , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[67]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[68]  Pu Gao,et al.  Inside the clustering window for random linear equations , 2015, Random Struct. Algorithms.

[69]  Michael Molloy,et al.  Sets that are connected in two random graphs , 2014, Random Struct. Algorithms.

[70]  A. Frieze,et al.  Introduction to Random Graphs , 2016 .

[71]  Nicolas Macris,et al.  Decay of Correlations for Sparse Graph Error Correcting Codes , 2011, SIAM J. Discret. Math..

[72]  Amin Coja-Oghlan,et al.  Chasing the K-Colorability Threshold , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[73]  A. Gerschcnfeld,et al.  Reconstruction for Models on Random Graphs , 2007, FOCS 2007.

[74]  A. Montanari,et al.  On the Dynamics of the Glass Transition on Bethe Lattices , 2005, cond-mat/0509366.

[75]  Yashodhan Kanoria,et al.  The set of solutions of random XORSAT formulae , 2011, SODA.

[76]  V. E. Stepanov On Some Features of the Structure of a Random Graph Near a Critical Point , 1988 .

[77]  A. Kempe On the Geographical Problem of the Four Colours , 1879 .

[78]  Allan Sly,et al.  Communications in Mathematical Physics Reconstruction of Random Colourings , 2009 .

[79]  Amin Coja-Oghlan,et al.  Belief Propagation Guided Decimation Fails on Random Formulas , 2017, J. ACM.

[80]  Will Perkins,et al.  Limits of discrete distributions and Gibbs measures on random graphs , 2015, Eur. J. Comb..

[81]  Nicholas C. Wormald,et al.  Counting connected graphs inside-out , 2005, J. Comb. Theory, Ser. B.

[82]  Jeong Han Kim,et al.  Poisson Cloning Model for Random Graphs , 2008, 0805.4133.

[83]  Florent Krzakala,et al.  Information-theoretic thresholds from the cavity method , 2016, STOC.

[84]  Florent Krzakala,et al.  Phase Transitions in the Coloring of Random Graphs , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[85]  M. Mézard,et al.  Random K-satisfiability problem: from an analytic solution to an efficient algorithm. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  Amin Coja-Oghlan,et al.  The Chromatic Number of Random Graphs for Most Average Degrees , 2016 .

[87]  Martin J. Wainwright,et al.  A new look at survey propagation and its generalizations , 2004, SODA '05.

[88]  Michael Molloy,et al.  Frozen variables in random boolean constraint satisfaction problems , 2012, SODA.

[89]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[90]  Michael Molloy,et al.  Cores in random hypergraphs and Boolean formulas , 2005, Random Struct. Algorithms.

[91]  Allan Sly,et al.  Proof of the Satisfiability Conjecture for Large k , 2014, STOC.

[92]  Daniel Fernholz Cores and Connectivity in Sparse Random Graphs , 2004 .