Adaptive Boundary Element Methods

This paper reviews the state of the art and discusses very recent mathematical developments in the field of adaptive boundary element methods. This includes an overview of available a posteriori error estimates as well as a state-of-the-art formulation of convergence and quasi-optimality of adaptive mesh-refining algorithms.

[1]  Wolfgang Dahmen,et al.  Adaptive methods for boundary integral equations: Complexity and convergence estimates , 2007, Math. Comput..

[2]  Michael Vogelius,et al.  Feedback and adaptive finite element solution of one-dimensional boundary value problems , 1984 .

[3]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[4]  Norbert Heuer,et al.  A p‐adaptive algorithm for the BEM with the hypersingular operator on the plane screen , 2002 .

[5]  Norbert Heuer,et al.  The optimal rate of convergence of the p-version of the boundary element method in two dimensions , 2004, Numerische Mathematik.

[6]  Christoph Schwab Variable order composite quadrature of singular and nearly singular integrals , 2005, Computing.

[7]  W. Hackbusch,et al.  Finite elements on degenerate meshes: inverse-type inequalities and applications , 2005 .

[8]  Olaf Steinbach,et al.  On a generalized $L_2$ projection and some related stability estimates in Sobolev spaces , 2002, Numerische Mathematik.

[9]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[10]  Carsten Carstensen,et al.  Averaging Techniques for the A Posteriori BEM Error Control for a Hypersingular Integral Equation in Two Dimensions , 2007, SIAM J. Sci. Comput..

[11]  V. A. Kondrat'ev,et al.  Boundary problems for elliptic equations in domains with conical or angular points , 1967 .

[12]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[13]  Birgit Faermann,et al.  Local a-posteriori error indicators for the Galerkin discretization of boundary integral equations , 1998 .

[14]  Ernst P. Stephan,et al.  Boundary Integral Operators in Countably Normed Spaces , 1998 .

[15]  Alan Demlow,et al.  Convergence and quasi-optimality of an adaptive finite element method for controlling L2 errors , 2011, Numerische Mathematik.

[16]  Christoph Schwab,et al.  The optimal p -version approximation of singularities on polyhedra in the boundary element method , 1996 .

[17]  Dirk Praetorius,et al.  Simple a posteriori error estimators for the h-version of the boundary element method , 2008, Computing.

[18]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[19]  Michael Karkulik,et al.  ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve☆ , 2013, Engineering analysis with boundary elements.

[20]  Michael Karkulik,et al.  Energy norm based error estimators for adaptive BEM for hypersingular integral equations , 2015 .

[21]  Jang Jou,et al.  A posteriori boundary element error estimation , 1999 .

[22]  Olaf Steinbach Adaptive Boundary Element Methods Based on Computational Schemes for Sobolev Norms , 2000, SIAM J. Sci. Comput..

[23]  Mark Ainsworth,et al.  The Conditioning of Boundary Element Equations on Locally Refined Meshes and Preconditioning by Diagonal Scaling , 1999 .

[24]  Karsten Urban,et al.  Adaptive Wavelet Methods on Unbounded Domains , 2012, Journal of Scientific Computing.

[25]  Carsten Carstensen,et al.  All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable , 2003, Math. Comput..

[26]  Wolfgang L. Wendland,et al.  Boundary integral equations , 2008 .

[27]  W. Mitchell Adaptive refinement for arbitrary finite-element spaces with hierarchical bases , 1991 .

[28]  Christoph Ortner,et al.  Convergence of simple adaptive Galerkin schemes based on h − h/2 error estimators , 2010, Numerische Mathematik.

[29]  Carsten Carstensen,et al.  An Adaptive Mesh-Refining Algorithm Allowing for an H1 Stable L2 Projection onto Courant Finite Element Spaces , 2004 .

[30]  G. Verchota Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains , 1984 .

[31]  E. Stephan,et al.  The hp-Version of the Boundary Element Method on Polygons , 1996 .

[32]  Ivo Babuška,et al.  The Problem of Selecting the Shape Functions for a p-Type Finite Element , 1989 .

[33]  Martin Costabel,et al.  Boundary Integral Operators on Lipschitz Domains: Elementary Results , 1988 .

[34]  Mario Bebendorf,et al.  Approximation of boundary element matrices , 2000, Numerische Mathematik.

[35]  Randolph E. Bank,et al.  A posteriori error estimates based on hierarchical bases , 1993 .

[36]  M. Bebendorf,et al.  Accelerating Galerkin BEM for linear elasticity using adaptive cross approximation , 2006 .

[37]  Norbert Heuer,et al.  The hp-version of the boundary element method with quasi-uniform meshes for weakly singular operators on surfaces , 2010 .

[38]  Joseph E. Pasciak,et al.  On the stability of the L2 projection in H1(Omega) , 2002, Math. Comput..

[39]  Carsten Carstensen,et al.  Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H1-stability of the L2-projection onto finite element spaces , 2002, Math. Comput..

[40]  S. Rjasanow,et al.  The Fast Solution of Boundary Integral Equations , 2007 .

[41]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[42]  B Faermann Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary elements methods. Part I. The two-dimensional case , 2000 .

[43]  Christoph Schwab,et al.  Exponential convergence of hp quadrature for integral operators with Gevrey kernels , 2011 .

[44]  R. Nochetto,et al.  Theory of adaptive finite element methods: An introduction , 2009 .

[45]  Olaf Steinbach,et al.  Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .

[46]  Dirk Praetorius,et al.  Estimator reduction and convergence of adaptive BEM , 2012, Applied numerical mathematics : transactions of IMACS.

[47]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[48]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[49]  Ernst P. Stephan,et al.  An Adaptive Two-Level Method for the Coupling of Nonlinear FEM-BEM Equations , 1999 .

[50]  Norbert Heuer,et al.  The p-version of the boundary element method for weakly singular operators on piecewise plane open surfaces , 2007, Numerische Mathematik.

[51]  Stefan A. Funken,et al.  Energy norm based a posteriori error estimation for boundary element methods in two dimensions , 2009 .

[52]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[53]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[54]  Carsten Carstensen,et al.  A posteriori error estimates for boundary element methods , 1995 .

[55]  De-hao Yu A-Posteriori Error Estimates and Adaptive Approaches for some Boundary Element Methods , 1987 .

[56]  Norbert Heuer,et al.  Exponential convergence of the hp-version for the boundary element method on open surfaces , 1999, Numerische Mathematik.

[57]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[58]  Carsten Carstensen,et al.  An a posteriori error estimate for a first-kind integral equation , 1997, Math. Comput..

[59]  Norbert Heuer An hp-adaptive refinement strategy for hypersingular operators on surfaces , 2002 .

[60]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[61]  Ernst P. Stephan,et al.  On the Convergence of the p-Version of the Boundary Element Galerkin Method. , 1989 .

[62]  Igor Kossaczký A recursive approach to local mesh refinement in two and three dimensions , 1994 .

[63]  Michael Karkulik,et al.  Quasi-optimal Convergence Rate for an Adaptive Boundary Element Method , 2013, SIAM J. Numer. Anal..

[64]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Partial Differential Equations , 1999 .

[65]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[66]  Ernst P. Stephan,et al.  Regularity of mixed boundary value problems in ℝ3 and boundary element methods on graded meshes , 1990 .

[67]  Michael Feischl,et al.  Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems , 2012 .

[68]  Norbert Heuer,et al.  The hp-version of the boundary element method with quasi-uniform meshes in three dimensions , 2008 .

[69]  Carsten Carstensen,et al.  Convergence of adaptive boundary element methods , 2012 .

[70]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[71]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[72]  Olaf Steinbach,et al.  The fast multipole method for the symmetric boundary integral formulation , 2006 .

[73]  Rob P. Stevenson,et al.  An optimal adaptive wavelet method without coarsening of the iterands , 2006, Math. Comput..

[74]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..

[75]  Olaf Steinbach,et al.  A new a posteriori error estimator in adaptive direct boundary element method , 2000 .

[76]  Ernst P. Stephan,et al.  Decompositions in Edge and Corner Singularities for the Solution of the Dirichlet Problem of the Laplacian in a Polyhedron , 1990 .

[77]  Stefan A. Funken,et al.  Simple error estimators for the Galerkin BEM for some hypersingular integral equation in 2D , 2013 .

[78]  Martin Costabel,et al.  Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation , 1985 .

[79]  J. Planchard,et al.  Une méthode variationnelle d’éléments finis pour la résolution numérique d’un problème extérieur dans $\mathbf {R}^3$ , 1973 .

[80]  R. Rodríguez Some remarks on Zienkiewicz‐Zhu estimator , 1994 .

[81]  Olaf Steinbach,et al.  On the stability of the $L_2$ projection in fractional Sobolev spaces , 2001, Numerische Mathematik.

[82]  Ernst P. Stephan,et al.  Two-level methods for the single layer potential in ℝ3 , 1998, Computing.

[83]  Jinchao Xu,et al.  Some Estimates for a Weighted L 2 Projection , 1991 .

[84]  Norbert Heuer,et al.  hp-adaptive Two-Level Methods for Boundary Integral Equations on Curves , 2001, Computing.

[85]  P. Oswald,et al.  Multilevel norms forH−1/2 , 1998, Computing.

[86]  V. Thomée,et al.  The stability in _{} and ¹_{} of the ₂-projection onto finite element function spaces , 1987 .

[87]  Tsogtgerel Gantumur,et al.  Adaptive boundary element methods with convergence rates , 2011, Numerische Mathematik.

[88]  Norbert Heuer,et al.  An iterative substructuring method for the $p$-version of the boundary element method for hypersingular integral operators in three dimensions , 1998 .

[89]  Norbert Heuer,et al.  The optimal convergence of the h–p version of the boundary element method with quasiuniform meshes for elliptic problems on polygonal domains , 2006, Adv. Comput. Math..

[90]  Kunibert G. Siebert,et al.  A BASIC CONVERGENCE RESULT FOR CONFORMING ADAPTIVE FINITE ELEMENTS , 2008 .

[91]  Carsten Carstensen,et al.  Residual-based a posteriori error estimate for hypersingular equation on surfaces , 2004, Numerische Mathematik.

[92]  Tsogtgerel Gantumur,et al.  An optimal adaptive wavelet method for nonsymmetric and indefinite elliptic problems , 2008 .

[93]  M. Dauge Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions , 1988 .

[94]  T. Dupont,et al.  Polynomial approximation of functions in Sobolev spaces , 1980 .

[95]  Michael Feischl,et al.  Adaptive FEM with Optimal Convergence Rates for a Certain Class of Nonsymmetric and Possibly Nonlinear Problems , 2012, SIAM J. Numer. Anal..

[96]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[97]  Olaf Steinbach,et al.  On C. Neumann's Method for Second-Order Elliptic Systems in Domains with Non-smooth Boundaries , 2001 .

[98]  Michael Karkulik,et al.  On 2D Newest Vertex Bisection: Optimality of Mesh-Closure and H1-Stability of L2-Projection , 2013 .

[99]  Sergej Rjasanow,et al.  Adaptive Low-Rank Approximation of Collocation Matrices , 2003, Computing.

[100]  W. Hackbusch,et al.  On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .

[101]  Birgit Faermann,et al.  Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods Part II. The three-dimensional case , 2002, Numerische Mathematik.

[102]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[103]  Miloslav Feistauer,et al.  Asymptotic and a posteriori error estimates for boundary element solutions of hypersingular integral equations , 1996 .

[104]  Randolph E. Bank,et al.  On the $${H^1}$$H1-stability of the $${L_2}$$L2-projection onto finite element spaces , 2014, Numerische Mathematik.

[105]  Ernst P. Stephan,et al.  Adaptive multilevel BEM for acoustic scattering , 1997 .

[106]  Michael Karkulik,et al.  Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: weakly-singular integral equation , 2014 .

[107]  Carsten Carstensen,et al.  Efficiency of a posteriori BEM-error estimates for first-kind integral equations on quasi-uniform meshes , 1996, Math. Comput..

[108]  E. P. Stephan,et al.  The $h-p$ version of the boundary element method on polygonal domains with quasiuniform meshes , 1991 .

[109]  Michael Karkulik,et al.  Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity , 2012, 1211.4225.

[110]  Carsten Carstensen,et al.  Numerische Mathematik A posteriori error estimate and h-adaptive algorithm on surfaces for Symm ’ s integral equation , 2001 .

[111]  Carsten Carstensen,et al.  Axioms of adaptivity , 2013, Comput. Math. Appl..

[112]  Ricardo H. Nochetto,et al.  Quasi-Optimal Convergence Rate of an Adaptive Discontinuous Galerkin Method , 2010, SIAM J. Numer. Anal..

[113]  M. Aurada,et al.  Convergence of adaptive BEM for some mixed boundary value problem , 2012, Applied numerical mathematics : transactions of IMACS.

[114]  Michael Karkulik,et al.  Efficiency and Optimality of Some Weighted-Residual Error Estimator for Adaptive 2D Boundary Element Methods , 2013, Comput. Methods Appl. Math..

[115]  Norbert Heuer,et al.  An adaptive boundary element method for the exterior Stokes problem in three dimensions , 2006 .

[116]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[117]  Carsten Carstensen,et al.  Averaging Techniques for the Effective Numerical Solution of Symm's Integral Equation of the First Kind , 2005, SIAM J. Sci. Comput..

[118]  Carsten Carstensen,et al.  Averaging Techniques for a Posteriori Error Control in Finite Element and Boundary Element Analysis , 2007 .

[119]  Wolfgang L. Wendland,et al.  Adaptive boundary element methods for strongly elliptic integral equations , 1988 .

[120]  Michael Feischl,et al.  Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data☆ , 2014, J. Comput. Appl. Math..

[121]  Michael Karkulik,et al.  Convergence of adaptive 3D BEM for weakly singular integral equations based on isotropic mesh‐refinement , 2013 .

[122]  Norbert Heuer,et al.  A posteriori error analysis for a boundary element method with nonconforming domain decomposition , 2014 .

[123]  E. G. Sewell,et al.  Automatic generation of triangulations for piecewise polynomial approximation , 1972 .

[124]  W. Wendland,et al.  A finite element method for some integral equations of the first kind , 1977 .

[125]  S. Rjasanow,et al.  The Fast Solution of Boundary Integral Equations (Mathematical and Analytical Techniques with Applications to Engineering) , 2007 .

[126]  Stephen Langdon,et al.  Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering* , 2012, Acta Numerica.

[127]  Rüdiger Verfürth,et al.  A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .

[128]  Carsten Carstensen,et al.  Adaptive Boundary Element Methods for Some First Kind Integral Equations , 1996 .

[129]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems II: optimal error estimates in L ∞ L 2 and L ∞ L ∞ , 1995 .

[130]  Michael Karkulik,et al.  HILBERT — a MATLAB implementation of adaptive 2D-BEM , 2014, Numerical Algorithms.

[131]  Michael Feischl,et al.  Each H1/2–stable projection yields convergence and quasi–optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd , 2013 .

[132]  Carsten Carstensen,et al.  Mathematical foundation of a posteriori error estimates and adaptive mesh-refining algorithms for boundary integral equations of the first kind , 2001 .