Adaptive Boundary Element Methods
暂无分享,去创建一个
[1] Wolfgang Dahmen,et al. Adaptive methods for boundary integral equations: Complexity and convergence estimates , 2007, Math. Comput..
[2] Michael Vogelius,et al. Feedback and adaptive finite element solution of one-dimensional boundary value problems , 1984 .
[3] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[4] Norbert Heuer,et al. A p‐adaptive algorithm for the BEM with the hypersingular operator on the plane screen , 2002 .
[5] Norbert Heuer,et al. The optimal rate of convergence of the p-version of the boundary element method in two dimensions , 2004, Numerische Mathematik.
[6] Christoph Schwab. Variable order composite quadrature of singular and nearly singular integrals , 2005, Computing.
[7] W. Hackbusch,et al. Finite elements on degenerate meshes: inverse-type inequalities and applications , 2005 .
[8] Olaf Steinbach,et al. On a generalized $L_2$ projection and some related stability estimates in Sobolev spaces , 2002, Numerische Mathematik.
[9] Christian Kreuzer,et al. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..
[10] Carsten Carstensen,et al. Averaging Techniques for the A Posteriori BEM Error Control for a Hypersingular Integral Equation in Two Dimensions , 2007, SIAM J. Sci. Comput..
[11] V. A. Kondrat'ev,et al. Boundary problems for elliptic equations in domains with conical or angular points , 1967 .
[12] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..
[13] Birgit Faermann,et al. Local a-posteriori error indicators for the Galerkin discretization of boundary integral equations , 1998 .
[14] Ernst P. Stephan,et al. Boundary Integral Operators in Countably Normed Spaces , 1998 .
[15] Alan Demlow,et al. Convergence and quasi-optimality of an adaptive finite element method for controlling L2 errors , 2011, Numerische Mathematik.
[16] Christoph Schwab,et al. The optimal p -version approximation of singularities on polyhedra in the boundary element method , 1996 .
[17] Dirk Praetorius,et al. Simple a posteriori error estimators for the h-version of the boundary element method , 2008, Computing.
[18] Barry F. Smith,et al. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .
[19] Michael Karkulik,et al. ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve☆ , 2013, Engineering analysis with boundary elements.
[20] Michael Karkulik,et al. Energy norm based error estimators for adaptive BEM for hypersingular integral equations , 2015 .
[21] Jang Jou,et al. A posteriori boundary element error estimation , 1999 .
[22] Olaf Steinbach. Adaptive Boundary Element Methods Based on Computational Schemes for Sobolev Norms , 2000, SIAM J. Sci. Comput..
[23] Mark Ainsworth,et al. The Conditioning of Boundary Element Equations on Locally Refined Meshes and Preconditioning by Diagonal Scaling , 1999 .
[24] Karsten Urban,et al. Adaptive Wavelet Methods on Unbounded Domains , 2012, Journal of Scientific Computing.
[25] Carsten Carstensen,et al. All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable , 2003, Math. Comput..
[26] Wolfgang L. Wendland,et al. Boundary integral equations , 2008 .
[27] W. Mitchell. Adaptive refinement for arbitrary finite-element spaces with hierarchical bases , 1991 .
[28] Christoph Ortner,et al. Convergence of simple adaptive Galerkin schemes based on h − h/2 error estimators , 2010, Numerische Mathematik.
[29] Carsten Carstensen,et al. An Adaptive Mesh-Refining Algorithm Allowing for an H1 Stable L2 Projection onto Courant Finite Element Spaces , 2004 .
[30] G. Verchota. Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains , 1984 .
[31] E. Stephan,et al. The hp-Version of the Boundary Element Method on Polygons , 1996 .
[32] Ivo Babuška,et al. The Problem of Selecting the Shape Functions for a p-Type Finite Element , 1989 .
[33] Martin Costabel,et al. Boundary Integral Operators on Lipschitz Domains: Elementary Results , 1988 .
[34] Mario Bebendorf,et al. Approximation of boundary element matrices , 2000, Numerische Mathematik.
[35] Randolph E. Bank,et al. A posteriori error estimates based on hierarchical bases , 1993 .
[36] M. Bebendorf,et al. Accelerating Galerkin BEM for linear elasticity using adaptive cross approximation , 2006 .
[37] Norbert Heuer,et al. The hp-version of the boundary element method with quasi-uniform meshes for weakly singular operators on surfaces , 2010 .
[38] Joseph E. Pasciak,et al. On the stability of the L2 projection in H1(Omega) , 2002, Math. Comput..
[39] Carsten Carstensen,et al. Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H1-stability of the L2-projection onto finite element spaces , 2002, Math. Comput..
[40] S. Rjasanow,et al. The Fast Solution of Boundary Integral Equations , 2007 .
[41] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations , 2000 .
[42] B Faermann. Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary elements methods. Part I. The two-dimensional case , 2000 .
[43] Christoph Schwab,et al. Exponential convergence of hp quadrature for integral operators with Gevrey kernels , 2011 .
[44] R. Nochetto,et al. Theory of adaptive finite element methods: An introduction , 2009 .
[45] Olaf Steinbach,et al. Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .
[46] Dirk Praetorius,et al. Estimator reduction and convergence of adaptive BEM , 2012, Applied numerical mathematics : transactions of IMACS.
[47] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[48] Rob P. Stevenson,et al. Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..
[49] Ernst P. Stephan,et al. An Adaptive Two-Level Method for the Coupling of Nonlinear FEM-BEM Equations , 1999 .
[50] Norbert Heuer,et al. The p-version of the boundary element method for weakly singular operators on piecewise plane open surfaces , 2007, Numerische Mathematik.
[51] Stefan A. Funken,et al. Energy norm based a posteriori error estimation for boundary element methods in two dimensions , 2009 .
[52] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[53] W. Hackbusch. A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.
[54] Carsten Carstensen,et al. A posteriori error estimates for boundary element methods , 1995 .
[55] De-hao Yu. A-Posteriori Error Estimates and Adaptive Approaches for some Boundary Element Methods , 1987 .
[56] Norbert Heuer,et al. Exponential convergence of the hp-version for the boundary element method on open surfaces , 1999, Numerische Mathematik.
[57] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[58] Carsten Carstensen,et al. An a posteriori error estimate for a first-kind integral equation , 1997, Math. Comput..
[59] Norbert Heuer. An hp-adaptive refinement strategy for hypersingular operators on surfaces , 2002 .
[60] J. Nédélec. Acoustic and electromagnetic equations , 2001 .
[61] Ernst P. Stephan,et al. On the Convergence of the p-Version of the Boundary Element Galerkin Method. , 1989 .
[62] Igor Kossaczký. A recursive approach to local mesh refinement in two and three dimensions , 1994 .
[63] Michael Karkulik,et al. Quasi-optimal Convergence Rate for an Adaptive Boundary Element Method , 2013, SIAM J. Numer. Anal..
[64] Alfio Quarteroni,et al. Domain Decomposition Methods for Partial Differential Equations , 1999 .
[65] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[66] Ernst P. Stephan,et al. Regularity of mixed boundary value problems in ℝ3 and boundary element methods on graded meshes , 1990 .
[67] Michael Feischl,et al. Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems , 2012 .
[68] Norbert Heuer,et al. The hp-version of the boundary element method with quasi-uniform meshes in three dimensions , 2008 .
[69] Carsten Carstensen,et al. Convergence of adaptive boundary element methods , 2012 .
[70] Leslie Greengard,et al. A fast algorithm for particle simulations , 1987 .
[71] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[72] Olaf Steinbach,et al. The fast multipole method for the symmetric boundary integral formulation , 2006 .
[73] Rob P. Stevenson,et al. An optimal adaptive wavelet method without coarsening of the iterands , 2006, Math. Comput..
[74] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..
[75] Olaf Steinbach,et al. A new a posteriori error estimator in adaptive direct boundary element method , 2000 .
[76] Ernst P. Stephan,et al. Decompositions in Edge and Corner Singularities for the Solution of the Dirichlet Problem of the Laplacian in a Polyhedron , 1990 .
[77] Stefan A. Funken,et al. Simple error estimators for the Galerkin BEM for some hypersingular integral equation in 2D , 2013 .
[78] Martin Costabel,et al. Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation , 1985 .
[79] J. Planchard,et al. Une méthode variationnelle d’éléments finis pour la résolution numérique d’un problème extérieur dans $\mathbf {R}^3$ , 1973 .
[80] R. Rodríguez. Some remarks on Zienkiewicz‐Zhu estimator , 1994 .
[81] Olaf Steinbach,et al. On the stability of the $L_2$ projection in fractional Sobolev spaces , 2001, Numerische Mathematik.
[82] Ernst P. Stephan,et al. Two-level methods for the single layer potential in ℝ3 , 1998, Computing.
[83] Jinchao Xu,et al. Some Estimates for a Weighted L 2 Projection , 1991 .
[84] Norbert Heuer,et al. hp-adaptive Two-Level Methods for Boundary Integral Equations on Curves , 2001, Computing.
[85] P. Oswald,et al. Multilevel norms forH−1/2 , 1998, Computing.
[86] V. Thomée,et al. The stability in _{} and ¹_{} of the ₂-projection onto finite element function spaces , 1987 .
[87] Tsogtgerel Gantumur,et al. Adaptive boundary element methods with convergence rates , 2011, Numerische Mathematik.
[88] Norbert Heuer,et al. An iterative substructuring method for the $p$-version of the boundary element method for hypersingular integral operators in three dimensions , 1998 .
[89] Norbert Heuer,et al. The optimal convergence of the h–p version of the boundary element method with quasiuniform meshes for elliptic problems on polygonal domains , 2006, Adv. Comput. Math..
[90] Kunibert G. Siebert,et al. A BASIC CONVERGENCE RESULT FOR CONFORMING ADAPTIVE FINITE ELEMENTS , 2008 .
[91] Carsten Carstensen,et al. Residual-based a posteriori error estimate for hypersingular equation on surfaces , 2004, Numerische Mathematik.
[92] Tsogtgerel Gantumur,et al. An optimal adaptive wavelet method for nonsymmetric and indefinite elliptic problems , 2008 .
[93] M. Dauge. Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions , 1988 .
[94] T. Dupont,et al. Polynomial approximation of functions in Sobolev spaces , 1980 .
[95] Michael Feischl,et al. Adaptive FEM with Optimal Convergence Rates for a Certain Class of Nonsymmetric and Possibly Nonlinear Problems , 2012, SIAM J. Numer. Anal..
[96] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[97] Olaf Steinbach,et al. On C. Neumann's Method for Second-Order Elliptic Systems in Domains with Non-smooth Boundaries , 2001 .
[98] Michael Karkulik,et al. On 2D Newest Vertex Bisection: Optimality of Mesh-Closure and H1-Stability of L2-Projection , 2013 .
[99] Sergej Rjasanow,et al. Adaptive Low-Rank Approximation of Collocation Matrices , 2003, Computing.
[100] W. Hackbusch,et al. On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .
[101] Birgit Faermann,et al. Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods Part II. The three-dimensional case , 2002, Numerische Mathematik.
[102] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[103] Miloslav Feistauer,et al. Asymptotic and a posteriori error estimates for boundary element solutions of hypersingular integral equations , 1996 .
[104] Randolph E. Bank,et al. On the $${H^1}$$H1-stability of the $${L_2}$$L2-projection onto finite element spaces , 2014, Numerische Mathematik.
[105] Ernst P. Stephan,et al. Adaptive multilevel BEM for acoustic scattering , 1997 .
[106] Michael Karkulik,et al. Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: weakly-singular integral equation , 2014 .
[107] Carsten Carstensen,et al. Efficiency of a posteriori BEM-error estimates for first-kind integral equations on quasi-uniform meshes , 1996, Math. Comput..
[108] E. P. Stephan,et al. The $h-p$ version of the boundary element method on polygonal domains with quasiuniform meshes , 1991 .
[109] Michael Karkulik,et al. Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity , 2012, 1211.4225.
[110] Carsten Carstensen,et al. Numerische Mathematik A posteriori error estimate and h-adaptive algorithm on surfaces for Symm ’ s integral equation , 2001 .
[111] Carsten Carstensen,et al. Axioms of adaptivity , 2013, Comput. Math. Appl..
[112] Ricardo H. Nochetto,et al. Quasi-Optimal Convergence Rate of an Adaptive Discontinuous Galerkin Method , 2010, SIAM J. Numer. Anal..
[113] M. Aurada,et al. Convergence of adaptive BEM for some mixed boundary value problem , 2012, Applied numerical mathematics : transactions of IMACS.
[114] Michael Karkulik,et al. Efficiency and Optimality of Some Weighted-Residual Error Estimator for Adaptive 2D Boundary Element Methods , 2013, Comput. Methods Appl. Math..
[115] Norbert Heuer,et al. An adaptive boundary element method for the exterior Stokes problem in three dimensions , 2006 .
[116] ROB STEVENSON,et al. The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..
[117] Carsten Carstensen,et al. Averaging Techniques for the Effective Numerical Solution of Symm's Integral Equation of the First Kind , 2005, SIAM J. Sci. Comput..
[118] Carsten Carstensen,et al. Averaging Techniques for a Posteriori Error Control in Finite Element and Boundary Element Analysis , 2007 .
[119] Wolfgang L. Wendland,et al. Adaptive boundary element methods for strongly elliptic integral equations , 1988 .
[120] Michael Feischl,et al. Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data☆ , 2014, J. Comput. Appl. Math..
[121] Michael Karkulik,et al. Convergence of adaptive 3D BEM for weakly singular integral equations based on isotropic mesh‐refinement , 2013 .
[122] Norbert Heuer,et al. A posteriori error analysis for a boundary element method with nonconforming domain decomposition , 2014 .
[123] E. G. Sewell,et al. Automatic generation of triangulations for piecewise polynomial approximation , 1972 .
[124] W. Wendland,et al. A finite element method for some integral equations of the first kind , 1977 .
[125] S. Rjasanow,et al. The Fast Solution of Boundary Integral Equations (Mathematical and Analytical Techniques with Applications to Engineering) , 2007 .
[126] Stephen Langdon,et al. Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering* , 2012, Acta Numerica.
[127] Rüdiger Verfürth,et al. A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .
[128] Carsten Carstensen,et al. Adaptive Boundary Element Methods for Some First Kind Integral Equations , 1996 .
[129] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems II: optimal error estimates in L ∞ L 2 and L ∞ L ∞ , 1995 .
[130] Michael Karkulik,et al. HILBERT — a MATLAB implementation of adaptive 2D-BEM , 2014, Numerical Algorithms.
[131] Michael Feischl,et al. Each H1/2–stable projection yields convergence and quasi–optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd , 2013 .
[132] Carsten Carstensen,et al. Mathematical foundation of a posteriori error estimates and adaptive mesh-refining algorithms for boundary integral equations of the first kind , 2001 .