Heparan sulfate glycosaminoglycans as primary cell surface receptors for herpes simplex virus.

[1]  J. Massagué,et al.  A single mutation affects both N-acetylglucosaminyltransferase and glucuronosyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[2]  J. Esko,et al.  Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans , 1992, The Journal of cell biology.

[3]  P. Paz,et al.  The fibroblast growth factor receptor is not required for herpes simplex virus type 1 infection , 1992, Journal of virology.

[4]  L. Enquist,et al.  The gIII glycoprotein of pseudorabies virus is involved in two distinct steps of virus attachment , 1991, Journal of virology.

[5]  P. Spear,et al.  Fibroblast growth factor receptor: does it have a role in the binding of herpes simplex virus? , 1991, Science.

[6]  B. Olwin,et al.  Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation , 1991, Science.

[7]  J. Esko,et al.  Biosynthesis of heparan sulfate. Coordination of polymer-modification reactions in a Chinese hamster ovary cell mutant defective in N-sulfotransferase. , 1991, The Journal of biological chemistry.

[8]  T. Kanno,et al.  BHV-1 adsorption is mediated by the interaction of glycoprotein gIII with heparinlike moiety on the cell surface. , 1991, Virology.

[9]  B. Herold,et al.  Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity , 1991, Journal of virology.

[10]  Jeffrey D. Esko,et al.  Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor , 1991, Cell.

[11]  P. Maher,et al.  Mediation of virion penetration into vascular cells by association of basic fibroblast growth factor with herpes simplex virus type 1 , 1990, Nature.

[12]  R. Kaner,et al.  Fibroblast growth factor receptor is a portal of cellular entry for herpes simplex virus type 1. , 1990, Science.

[13]  R. Burke,et al.  Soluble forms of herpes simplex virus glycoprotein D bind to a limited number of cell surface receptors and inhibit virus entry into cells , 1990, Journal of virology.

[14]  D. Sawitzky,et al.  Comparison of heparin-sensitive attachment of pseudorabies virus (PRV) and herpes simplex virus type 1 and identification of heparin-binding PRV glycoproteins. , 1990, The Journal of general virology.

[15]  T. Mettenleiter,et al.  Interaction of glycoprotein gIII with a cellular heparinlike substance mediates adsorption of pseudorabies virus , 1990, Journal of virology.

[16]  N. Sugg,et al.  Early interactions of pseudorabies virus with host cells: functions of glycoprotein gIII , 1989, Journal of virology.

[17]  T. Mettenleiter Glycoprotein gIII deletion mutants of pseudorabies virus are impaired in virus entry. , 1989, Virology.

[18]  A. Fuller,et al.  Neutralizing antibodies specific for glycoprotein H of herpes simplex virus permit viral attachment to cells but prevent penetration , 1989, Journal of virology.

[19]  J. Esko,et al.  Undersulfated heparan sulfate in a Chinese hamster ovary cell mutant defective in heparan sulfate N-sulfotransferase. , 1989, The Journal of biological chemistry.

[20]  Desmond G. Higgins,et al.  Fast and sensitive multiple sequence alignments on a microcomputer , 1989, Comput. Appl. Biosci..

[21]  P. Spear,et al.  Initial interaction of herpes simplex virus with cells is binding to heparan sulfate , 1989, Journal of virology.

[22]  G. Air,et al.  The neuraminidase of influenza virus , 1989, Proteins.

[23]  D. McGeoch,et al.  The genomes of the human herpesviruses: contents, relationships, and evolution. , 1989, Annual review of microbiology.

[24]  D. Higgins,et al.  See Blockindiscussions, Blockinstats, Blockinand Blockinauthor Blockinprofiles Blockinfor Blockinthis Blockinpublication Clustal: Blockina Blockinpackage Blockinfor Blockinperforming Multiple Blockinsequence Blockinalignment Blockinon Blockina Minicomputer Article Blockin Blockinin Blockin , 2022 .

[25]  J. Esko,et al.  Tumor formation dependent on proteoglycan biosynthesis. , 1988, Science.

[26]  S. Person,et al.  Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion , 1988 .

[27]  T. Mettenleiter,et al.  Glycoprotein gIII of pseudorabies virus is multifunctional , 1988, Journal of virology.

[28]  L. J. Perry,et al.  The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. , 1988, The Journal of general virology.

[29]  S. Person,et al.  Monoclonal antibodies define a domain on herpes simplex virus glycoprotein B involved in virus penetration , 1988, Journal of virology.

[30]  P. Desai,et al.  Excretion of non-infectious virus particles lacking glycoprotein H by a temperature-sensitive mutant of herpes simplex virus type 1: evidence that gH is essential for virion infectivity. , 1988, The Journal of general virology.

[31]  David C. Johnson,et al.  A herpes simplex virus mutant in which glycoprotein D sequences are replaced by beta-galactosidase sequences binds to but is unable to penetrate into cells , 1988, Journal of virology.

[32]  Eugene W. Myers,et al.  Optimal alignments in linear space , 1988, Comput. Appl. Biosci..

[33]  J. Glorioso,et al.  Neutralizing monoclonal antibodies specific for herpes simplex virus glycoprotein D inhibit virus penetration , 1987, Journal of virology.

[34]  J. Esko,et al.  Inhibition of chondroitin and heparan sulfate biosynthesis in Chinese hamster ovary cell mutants defective in galactosyltransferase I. , 1987, The Journal of biological chemistry.

[35]  A. Fuller,et al.  Anti-glycoprotein D antibodies that permit adsorption but block infection by herpes simplex virus 1 prevent virion-cell fusion at the cell surface. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[36]  A. Fuller,et al.  Herpes simplex virus glycoproteins associated with different morphological entities projecting from the virion envelope. , 1987, The Journal of general virology.

[37]  P. Spear,et al.  Amino-terminal sequence, synthesis, and membrane insertion of glycoprotein B of herpes simplex virus type 1 , 1987, Journal of virology.

[38]  S. Person,et al.  The nucleotide sequence of the gB glycoprotein gene of HSV-2 and comparison with the corresponding gene of HSV-1. , 1986, Virology.

[39]  P. Spear,et al.  Oligomerization of herpes simplex virus glycoprotein B , 1986, Journal of virology.

[40]  L. Corey,et al.  Infections with herpes simplex viruses (1). , 1986, The New England journal of medicine.

[41]  V. Speziali,et al.  Sialylated oligosaccharides O-glycosidically linked to glycoprotein C from herpes simplex virus type 1 , 1985, Journal of virology.

[42]  J. Esko,et al.  Animal cell mutants defective in glycosaminoglycan biosynthesis. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[43]  D. Galloway,et al.  Characterization of the gene encoding herpes simplex virus type 2 glycoprotein C and comparison with the type 1 counterpart , 1985, Journal of virology.

[44]  P. Pellett,et al.  Anatomy of the herpes simplex virus 1 strain F glycoprotein B gene: primary sequence and predicted protein structure of the wild type and of monoclonal antibody-resistant mutants , 1985, Journal of virology.

[45]  F. Rixon,et al.  Characterisation of a herpes simplex virus type 1 mutant which has a temperature-sensitive defect in penetration of cells and assembly of capsids. , 1984, Virology.

[46]  D. Dowbenko,et al.  Extensive homology between the herpes simplex virus type 2 glycoprotein F gene and the herpes simplex virus type 1 glycoprotein C gene , 1984, Journal of virology.

[47]  R. Costa,et al.  Molecular basis of the glycoprotein-C-negative phenotype of herpes simplex virus type 1 macroplaque strain , 1984, Journal of virology.

[48]  S. Person,et al.  Nucleotide sequence specifying the glycoprotein gene, gB, of herpes simplex virus type 1. , 1984, Virology.

[49]  E. Lycke,et al.  Glycoprotein C of herpes simplex virus type 1: characterization of O-linked oligosaccharides. , 1983, The Journal of general virology.

[50]  David C. Johnson,et al.  O-linked oligosaccharides are acquired by herpes simplex virus glycoproteins in the Golgi apparatus , 1983, Cell.

[51]  R. Eisenberg,et al.  Detailed analysis of the portion of the herpes simplex virus type 1 genome encoding glycoprotein C , 1983, Journal of virology.

[52]  P. Schaffer,et al.  A virion-associated glycoprotein essential for infectivity of herpes simplex virus type 1. , 1981, Virology.

[53]  R. Langer,et al.  Heparinase production by Flavobacterium heparinum , 1981, Applied and environmental microbiology.

[54]  A. Hamberger,et al.  Differences in attachment between herpes simplex type 1 and type 2 viruses to neurons and glial cells , 1980, Infection and immunity.

[55]  E. Lycke,et al.  Evidence for herpes simplex virus type-selective receptors on cellular plasma membranes. , 1979, The Journal of general virology.

[56]  P. Spear,et al.  Membrane proteins specified by herpes simplex viruses. III. Role of glycoprotein VP7(B2) in virion infectivity , 1979, Journal of virology.

[57]  P. Spear,et al.  Membrane proteins specified by herpes simplex viruses. IV. Conformation of the virion glycoprotein designated VP7(B2) , 1979, Journal of virology.

[58]  K. Takemoto,et al.  Inhibition of Herpes Virus by Natural and Synthetic Acid Polysaccharides , 1964, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[59]  A. Nahmias,et al.  INHIBITORY EFFECT OF HEPARIN ON HERPES SIMPLEX VIRUS , 1964, Journal of bacteriology.

[60]  A. Vaheri HEPARIN AND RELATED POLYIONIC SUBSTANCES AS VIRUS INHIBITORS. , 1964, Acta pathologica et microbiologica Scandinavica. Supplementum.