Degaussing and decay reduction in the short superconducting dipole models for the LHC

The time decay of field harmonics during current plateaus is a known drawback of superconducting accelerator magnets. The present understanding of this phenomenon refers to a combination of flux creep and of the interaction between the redistribution of currents in Rutherford cables and the filament magnetization. Current cycles of decreasing amplitude, called here degaussing, were found to reduce significantly the decay observed in accelerator magnets. This paper reports on the measured reduction of decay obtained in short dipole models for the LHC and on one experiment with a single LHC strand.