Structure and Biogenesis of the Capsular F1 Antigen from Yersinia pestis Preserved Folding Energy Drives Fiber Formation

Most gram-negative pathogens express fibrous adhesive virulence organelles that mediate targeting to the sites of infection. The F1 capsular antigen from the plague pathogen Yersinia pestis consists of linear fibers of a single subunit (Caf1) and serves as a prototype for nonpilus organelles assembled via the chaperone/usher pathway. Genetic data together with high-resolution X-ray structures corresponding to snapshots of the assembly process reveal the structural basis of fiber formation. Comparison of chaperone bound Caf1 subunit with the subunit in the fiber reveals a novel type of conformational change involving the entire hydrophobic core of the protein. The observed conformational change suggests that the chaperone traps a high-energy folding intermediate of Caf1. A model is proposed in which release of the subunit allows folding to be completed, driving fiber formation.

[1]  V. Stojanoff,et al.  X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. , 1999, Science.

[2]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[3]  N. Sharon,et al.  Dissociation and reassembly of Escherichia coli type 1 pili , 1981, Journal of bacteriology.

[4]  S. Knight,et al.  Overexpression, purification, crystallization and preliminary X-ray diffraction analysis of the F1 antigen Caf1M-Caf1 chaperone-subunit pre-assembly complex from Yersinia pestis. , 2003, Acta crystallographica. Section D, Biological crystallography.

[5]  A. Rakin,et al.  Yersinia pestis , 2022, CABI Compendium.

[6]  R. Glockshuber,et al.  Chaperone-independent folding of type 1 pilus domains. , 2002, Journal of molecular biology.

[7]  G. Waksman,et al.  Structural basis of chaperone function and pilus biogenesis. , 1999, Science.

[8]  B. Matthews,et al.  The response of T4 lysozyme to large‐to‐small substitutions within the core and its relation to the hydrophobic effect , 1998, Protein science : a publication of the Protein Society.

[9]  G. Waksman,et al.  Chaperone Priming of Pilus Subunits Facilitates a Topological Transition that Drives Fiber Formation , 2002, Cell.

[10]  S. Hultgren,et al.  The chaperone/usher pathway: a major terminal branch of the general secretory pathway. , 1998, Current opinion in microbiology.

[11]  S. Hultgren,et al.  Periplasmic chaperone recognition motif of subunits mediates quaternary interactions in the pilus , 1998, The EMBO journal.

[12]  R. Titball,et al.  Vaccination against bubonic and pneumonic plague. , 2001, Vaccine.

[13]  S. Knight,et al.  Donor strand complementation mechanism in the biogenesis of non‐pilus systems , 2002, Molecular microbiology.

[14]  A. V. Karlyshev,et al.  Structural and Functional Significance of the FGL Sequence of the Periplasmic Chaperone Caf1M of Yersinia pestis , 1999, Journal of bacteriology.

[15]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[16]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[17]  S. Chanteau,et al.  Multidrug resistance in Yersinia pestis mediated by a transferable plasmid. , 1997, The New England journal of medicine.

[18]  J. Berglund,et al.  Bacterial adhesins: structural studies reveal chaperone function and pilus biogenesis. , 2000, Current opinion in chemical biology.

[19]  R. Rosqvist,et al.  Role of Fraction 1 Antigen of Yersinia pestis in Inhibition of Phagocytosis , 2002, Infection and Immunity.

[20]  G J Kleywegt,et al.  Detection, delineation, measurement and display of cavities in macromolecular structures. , 1994, Acta crystallographica. Section D, Biological crystallography.

[21]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[22]  T. Chernovskaya,et al.  An extended hydrophobic interactive surface of Yersinia pestis Caf1M chaperone is essential for subunit binding and F1 capsule assembly , 2001, Molecular microbiology.

[23]  F. Jacob-Dubuisson,et al.  Chaperone-assisted self-assembly of pili independent of cellular energy. , 1994, The Journal of biological chemistry.

[24]  H. Wolfson,et al.  Shape complementarity at protein–protein interfaces , 1994, Biopolymers.

[25]  V S Lamzin,et al.  Automated refinement for protein crystallography. , 1997, Methods in enzymology.

[26]  Christos Stathopoulos,et al.  Bacterial Outer Membrane Ushers Contain Distinct Targeting and Assembly Domains for Pilus Biogenesis , 2002, Journal of bacteriology.

[27]  A M Lesk,et al.  Interior and surface of monomeric proteins. , 1987, Journal of molecular biology.

[28]  H. Saibil,et al.  Molecular chaperones: containers and surfaces for folding, stabilising or unfolding proteins. , 2000, Current opinion in structural biology.

[29]  J. Pinkner,et al.  Molecular basis of two subfamilies of immunoglobulin‐like chaperones. , 1996, The EMBO journal.

[30]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[31]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.