An 8-Channel 5–33-GHz Transmit Phased Array Beamforming IC With 10.8–14.7-dBm Psat for C-, X-, Ku-, and Ka-Band SATCOM

This article presents an eight-channel 5–33-GHz transmit phased-array radio frequency integrated circuit (RFIC) for <inline-formula> <tex-math notation="LaTeX">$C$ </tex-math></inline-formula>-, <inline-formula> <tex-math notation="LaTeX">$X$ </tex-math></inline-formula>-, <inline-formula> <tex-math notation="LaTeX">$Ku$ </tex-math></inline-formula>-, and <inline-formula> <tex-math notation="LaTeX">$Ka$ </tex-math></inline-formula>-band SATCOM applications. The <inline-formula> <tex-math notation="LaTeX">$4\,\, {}\times {}2$ </tex-math></inline-formula> beamformer is implemented in a 90-nm SiGe HBT process. Each channel has a wideband two-stage power amplifier (PA), a phase shifter (PS), a variable gain amplifier (VGA), and a single-ended to differential (S2D) converter. The input radio frequency (RF) power is distributed to the eight channels using a two-stage lumped-element Wilkinson network and active dividers. The measured electronic gain is 24–27 dB at 5–33 GHz with 5-bit PS operation and >20 dB gain control. A peak OP1dB and OPsat of 10.8–14 dBm is achieved over the entire frequency range. The chip is then implemented in a wideband phased array using tapered-slot (Vivaldi) antennas. The 16-element phased array achieves ±60° scanning at <inline-formula> <tex-math notation="LaTeX">$C$ </tex-math></inline-formula>-, <inline-formula> <tex-math notation="LaTeX">$X$ </tex-math></inline-formula>-, and <inline-formula> <tex-math notation="LaTeX">$Ku$ </tex-math></inline-formula>-bands and ±30° scanning at <inline-formula> <tex-math notation="LaTeX">$Ka$ </tex-math></inline-formula>-band with a broadside effective isotropic radiated power (EIRP) of 16–38.5 dBm at 8–32 GHz. Quadrature phase shift keying (QPSK), 8-phase shift keying (PSK), and 16-quadrature amplitude modulation (QAM) waveform are delivered to the phased array for performance evaluation, and <4%–4.8% error vector magnitude (EVM) is achieved in <inline-formula> <tex-math notation="LaTeX">$C - Ka$ </tex-math></inline-formula>-bands at P1dB (EIRP) operation. Application areas are <inline-formula> <tex-math notation="LaTeX">$C-/X-/Ku-/Ka$ </tex-math></inline-formula>-band ground terminals for satellite communications (SATCOMs).

[1]  Gabriel M. Rebeiz,et al.  64-Element 16–52-GHz Transmit and Receive Phased Arrays for Multiband 5G-NR FR2 Operation , 2023, IEEE Transactions on Microwave Theory and Techniques.

[2]  Gabriel M. Rebeiz,et al.  A 5-33 GHz 8-Channel Transmit Beamformer with Peak Power of 14 dBm for X/Ku/Ka-band SATCOM Applications , 2022, 2022 IEEE International Symposium on Phased Array Systems & Technology (PAST).

[3]  Jun Ouyang,et al.  A Scalable Ka-Band 1024-Element Transmit Dual-Circularly-Polarized Planar Phased Array for SATCOM Application , 2022, IEEE Access.

[4]  Gabriel M. Rebeiz,et al.  A Multi-Band 16–52-GHz Transmit Phased Array Employing 4 × 1 Beamforming IC With 14–15.4-dBm Psat for 5G NR FR2 Operation , 2022, IEEE Journal of Solid-State Circuits.

[5]  Gabriel M. Rebeiz,et al.  A 27–31-GHz 1024-Element Ka-Band SATCOM Phased-Array Transmitter With 49.5-dBW Peak EIRP, 1-dB AR, and ±70° Beam Scanning , 2022, IEEE Transactions on Microwave Theory and Techniques.

[6]  Gabriel M. Rebeiz,et al.  Simultaneous Channel Phased-Array Calibration Using Orthogonal Codes and Post-Coding , 2021, Intelligent Memory Systems.

[7]  Gabriel M. Rebeiz,et al.  A 1024-Element Ku-Band SATCOM Phased-Array Transmitter With 45-dBW Single-Polarization EIRP , 2021, IEEE Transactions on Microwave Theory and Techniques.

[8]  Gabriel M. Rebeiz,et al.  A 256-Element Ku-Band Polarization Agile SATCOM Transmit Phased Array With Wide-Scan Angles, Low Cross Polarization, Deep Nulls, and 36.5-dBW EIRP per Polarization , 2021, IEEE Transactions on Microwave Theory and Techniques.

[9]  Gabriel M. Rebeiz,et al.  Wideband 23.5–29.5-GHz Phased Arrays for Multistandard 5G Applications and Carrier Aggregation , 2021, IEEE Transactions on Microwave Theory and Techniques.

[10]  E. Preisler A Commercial Foundry Perspective of SiGe BiCMOS Process Technologies , 2020, 2020 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS).

[11]  Gabriel M. Rebeiz,et al.  A Low-Cost Scalable 32-Element 28-GHz Phased Array Transceiver for 5G Communication Links Based on a $2\times 2$ Beamformer Flip-Chip Unit Cell , 2018, IEEE Journal of Solid-State Circuits.

[12]  Gabriel M. Rebeiz,et al.  An Eight-Element 2–16-GHz Programmable Phased Array Receiver With One, Two, or Four Simultaneous Beams in SiGe BiCMOS , 2016, IEEE Transactions on Microwave Theory and Techniques.

[13]  Yo-Shen Lin,et al.  Super compact on-chip wilkinson power divider using bridged-T coils , 2016, 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT).

[14]  Yin Yixin,et al.  A design of phased array antenna based on the Vivaldi antenna , 2010, 2010 2nd International Conference on Industrial and Information Systems.

[15]  Gabriel M. Rebeiz,et al.  A $Ku$ -Band Two-Antenna Four-Simultaneous Beams SiGe BiCMOS Phased Array Receiver , 2010, IEEE Transactions on Microwave Theory and Techniques.

[16]  Gabriel M. Rebeiz,et al.  0.13-$\mu$m CMOS Phase Shifters for X-, Ku-, and K-Band Phased Arrays , 2007, IEEE Journal of Solid-State Circuits.