Time-dependent multistate switching of topological antiferromagnetic order in Mn 3 Sn

The manipulation of antiferromagnetic order by means of spin-orbit torques opens unprecedented opportunities to exploit the dynamics of antiferromagnets in spintronic devices. In this work, we investigate the current-induced switching of the magnetic octupole vector in the Weyl antiferromagnet Mn 3 Sn as a function of pulse shape, magnetic field, temperature, and time. We find that the switching behavior can be either bistable or tristable depending on the temporal structure of the current pulses. Time-resolved Hall effect measurements performed during the current pulsing reveal that Mn 3 Sn switching proceeds via a two-step demagnetization-remagnetization process caused by self-heating over a timescale of tens of ns followed by cooling in the presence of spin-orbit torques. Single-shot switching measurements with 50 ps temporal resolution indicate that chiral spin rotation is either damped or incoherent in polycrystalline Mn 3 Sn. Our results shed light on the switching dynamics of Mn 3 Sn and prove the existence of extrinsic limits on its switching speed.

[1]  See-Hun Yang,et al.  Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque , 2022, Science advances.

[2]  E. Fullerton,et al.  Quantum Sensing and Imaging of Spin–Orbit‐Torque‐Driven Spin Dynamics in the Non‐Collinear Antiferromagnet Mn3Sn , 2022, Advanced materials.

[3]  A. Manchon,et al.  Unconventional Robust Spin-Transfer Torque in Noncollinear Antiferromagnetic Junctions. , 2022, Physical review letters.

[4]  E. Tsymbal,et al.  Tunneling Magnetoresistance in Noncollinear Antiferromagnetic Tunnel Junctions , 2021, 2023 IEEE International Magnetic Conference - Short Papers (INTERMAG Short Papers).

[5]  T. Higo,et al.  Giant field-like torque by the out-of-plane magnetic spin Hall effect in a topological antiferromagnet , 2021, Nature Communications.

[6]  L. Y. Chen,et al.  Large ultrafast-modulated Voigt effect in noncollinear antiferromagnet Mn3Sn , 2021, Nature Communications.

[7]  H. Ohno,et al.  Correlation of anomalous Hall effect with structural parameters and magnetic ordering in Mn3+xSn1−x thin films , 2021 .

[8]  G. Kar,et al.  Interplay of Voltage Control of Magnetic Anisotropy, Spin-Transfer Torque, and Heat in the Spin-Orbit-Torque Switching of Three-Terminal Magnetic Tunnel Junctions , 2021, Physical Review Applied.

[9]  H. Ohno,et al.  Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque , 2021, Nature Materials.

[10]  K. Yakushiji,et al.  Fabrication of polycrystalline Weyl antiferromagnetic Mn3Sn thin films on various seed layers , 2021 .

[11]  P. Khalili Amiri,et al.  Observation of current-induced switching in non-collinear antiferromagnetic IrMn3 by differential voltage measurements , 2021, Nature Communications.

[12]  Xionghua Liu,et al.  Thickness dependent anomalous Hall effect in noncollinear antiferromagnetic Mn3Sn polycrystalline thin films , 2021 .

[13]  T. Higo,et al.  Large Hall Signal due to Electrical Switching of an Antiferromagnetic Weyl Semimetal State , 2021, Small Science.

[14]  K. Yakushiji,et al.  Spin–orbit torque switching of the antiferromagnetic state in polycrystalline Mn3Sn/Cu/heavy metal heterostructures , 2021 .

[15]  T. Devolder,et al.  Real-time Hall-effect detection of current-induced magnetization dynamics in ferrimagnets , 2021, Nature Communications.

[16]  H. Ohno,et al.  Spin-orbit torque switching of an antiferromagnetic metallic heterostructure , 2020, Nature Communications.

[17]  G. Sala,et al.  Systematic study of nonmagnetic resistance changes due to electrical pulsing in single metal layers and metal/antiferromagnet bilayers , 2020, 2011.13413.

[18]  J. M. Kikkawa,et al.  Kondo physics in antiferromagnetic Weyl semimetal Mn3+xSn1−x films , 2020, Science Advances.

[19]  M. Gilbert,et al.  Metallic antiferromagnets , 2020, 2005.05247.

[20]  X. Xing,et al.  Complicated magnetic structure and its strong correlation with the anomalous Hall effect in Mn3Sn , 2020 .

[21]  R. Arita,et al.  Electrical manipulation of a topological antiferromagnetic state , 2020, Nature.

[22]  M. Oogane,et al.  Fabrication and evaluation of highly c-plane oriented Mn3Sn thin films , 2020, AIP Advances.

[23]  T. Jungwirth,et al.  Current-induced fragmentation of antiferromagnetic domains , 2019, 1912.05287.

[24]  H. Ohno,et al.  Crystal orientation and anomalous Hall effect of sputter-deposited non-collinear antiferromagnetic Mn3Sn thin films , 2019, Applied Physics Express.

[25]  S. Huang,et al.  Absence of Evidence of Electrical Switching of the Antiferromagnetic Néel Vector. , 2019, Physical review letters.

[26]  N. Tamura,et al.  Resistive contribution in electrical-switching experiments with antiferromagnets , 2019, 1910.08576.

[27]  J. Wunderlich,et al.  Quenching of an antiferromagnet into high resistivity states using electrical or ultrashort optical pulses , 2019, Nature Electronics.

[28]  M. Oogane,et al.  Improvement of Large Anomalous Hall Effect in Polycrystalline Antiferromagnetic Mn3+xSn Thin Films , 2019, IEEE Transactions on Magnetics.

[29]  F. Pan,et al.  Anomalous Hall Effect–Like Behavior with In‐Plane Magnetic Field in Noncollinear Antiferromagnetic Mn3Sn Films , 2019, Advanced Electronic Materials.

[30]  E. Bauer,et al.  Comparing the anomalous Hall effect and the magneto-optical Kerr effect through antiferromagnetic phase transitions in Mn3Sn , 2019, Applied Physics Letters.

[31]  J. Sinova,et al.  Dynamics of noncollinear antiferromagnetic textures driven by spin current injection , 2019, Physical Review B.

[32]  Muhammad Ikhlas,et al.  Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet , 2019, Nature.

[33]  C. Chien,et al.  Anomalous Hall effect in thin films of the Weyl antiferromagnet Mn3Sn , 2018, Applied Physics Letters.

[34]  Xiaokang Li Anomalous Nernst and Righi-Leduc Effects in Mn3Sn:Berry Curvature and Entropy Flow , 2018 .

[35]  J. Sinova Topological Antiferromagnetic Spintronics , 2018 .

[36]  J. Sinova,et al.  Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems , 2018, Reviews of Modern Physics.

[37]  R. Arita,et al.  Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal , 2018, Nature photonics.

[38]  Takeshi Kondo,et al.  Evidence for magnetic Weyl fermions in a correlated metal. , 2017, Nature materials.

[39]  Muhammad Ikhlas,et al.  Large anomalous Nernst effect at room temperature in a chiral antiferromagnet , 2017, Nature Physics.

[40]  Tristan Matalla-Wagner,et al.  Electrical Switching of Antiferromagnetic Mn2Au and the Role of Thermal Activation , 2017, Physical Review Applied.

[41]  T. Jungwirth,et al.  Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility , 2017, Nature Communications.

[42]  Jörg Raabe,et al.  Spatially and time-resolved magnetization dynamics driven by spin-orbit torques. , 2017, Nature nanotechnology.

[43]  H. Fujita Field‐free, spin‐current control of magnetization in non‐collinear chiral antiferromagnets , 2016, 1610.07615.

[44]  T. Higo,et al.  Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature , 2016, Nature.

[45]  C. Felser,et al.  Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge , 2015, Science Advances.

[46]  J. Wunderlich,et al.  Antiferromagnetic spintronics. , 2015, Nature nanotechnology.

[47]  Wenzhu Liu,et al.  Magnetic anisotropy of single-crystalline Mn3Sn in triangular and helix-phase states , 2015 .

[48]  Abhijit Ghosh,et al.  Interplay of spin-orbit torque and thermoelectric effects in ferromagnet/normal-metal bilayers , 2014, 1412.0865.

[49]  I. Turek,et al.  Room-temperature antiferromagnetic memory resistor. , 2014, Nature materials.

[50]  S. Bandiera,et al.  Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection , 2011, Nature.

[51]  S. Tomiyoshi,et al.  Spin structure and weak ferromagnetism of Mn3Sn , 1987 .

[52]  Y. Yamaguchi,et al.  Magnetic Structure and Weak Ferromagnetism of Mn3Sn Studied by Polarized Neutron Diffraction , 1982 .