A respiratory-driven and an artificially driven ATP synthesis in mutants of Vibrio parahaemolyticus lacking H+-translocating ATPase.
暂无分享,去创建一个
[1] V. Skulachev,et al. The ATP‐driven primary Na+ pump in subcellular vesicles of Vibrio alginolyticus , 1988, FEBS letters.
[2] P. Dimroth,et al. Characterization of the Na+-stimulated ATPase of Propionigenium modestum as an enzyme of the F1F0 type. , 1987, European journal of biochemistry.
[3] M. Tsuda,et al. Properties of adenosine triphosphate-hydrolyzing enzymes in membrane vesicles of Vibrio parahaemolyticus. , 1987, Chemical & pharmaceutical bulletin.
[4] J. Konisky,et al. Identification of a vanadate-sensitive, membrane-bound ATPase in the archaebacterium Methanococcus voltae , 1987, Journal of bacteriology.
[5] M. Tsuda,et al. Na+/adenosine co-transport in Vibrio parahaemolyticus. , 1987, Biochimica et biophysica acta.
[6] M. Tsuda,et al. A novel mechanism for utilization of extracellular AMP in Vibrio parahaemolyticus. , 1987, Biochemical and biophysical research communications.
[7] V. Skulachev,et al. The sodium cycle. I. Na+-dependent motility and modes of membrane energization in the marine alkalotolerant vibrio Alginolyticus. , 1986, Biochimica et biophysica acta.
[8] V. Skulachev,et al. The sodium cycle. II. Na+-coupled oxidative phosphorylation in Vibrio alginolyticus cells. , 1986, Biochimica et biophysica acta.
[9] J. Lancaster,et al. An electrogenic sodium‐translocating ATPase in Methanococcus voltae , 1986 .
[10] M. Futai,et al. Deletion of seven amino acid residues from the gamma subunit of Escherichia coli H+-ATPase causes total loss of F1 assembly on membranes. , 1985, Archives of biochemistry and biophysics.
[11] T. Tsuchiya,et al. Respiration-driven Na+ pump and Na+ circulation in Vibrio parahaemolyticus , 1985, Journal of bacteriology.
[12] P. Dimroth,et al. Life by a new decarboxylation‐dependent energy conservation mechanism with Na+ as coupling ion , 1984, The EMBO journal.
[13] T. Unemoto,et al. Growth of a marine Vibrio alginolyticus and moderately halophilic V. costicola becomes uncoupler resistant when the respiration-dependent Na+ pump functions , 1983, Journal of bacteriology.
[14] T. Unemoto,et al. A respiration-dependent primary sodium extrusion system functioning at alkaline pH in the marine bacterium Vibrio alginolyticus. , 1981, Biochemical and biophysical research communications.
[15] S. Schuldiner,et al. Sodium-proton antiport in isolated membrane vesicles of Escherichia coli. , 1978, Biochemistry.
[16] L. Adler,et al. The maintenance of the energized membrane state and its relation to active transport in Escherichia coli. , 1975, Biochimica et biophysica acta.
[17] P. Davies,et al. Effect of removal or modification of subunit polypeptides on the coupling factor and hydrolytic activities of the Ca2+ and Mg2+-activated adenosine triphosphatase of Escherichia coli , 1973 .
[18] B. Rosen. Restoration of Active Transport in an Mg2+-Adenosine Triphosphatase-Deficient Mutant of Escherichia coli , 1973, Journal of bacteriology.
[19] U. K. Laemmli,et al. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.
[20] O. H. Lowry,et al. Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.
[21] C. H. Fiske,et al. THE COLORIMETRIC DETERMINATION OF PHOSPHORUS , 1925 .