A respiratory-driven and an artificially driven ATP synthesis in mutants of Vibrio parahaemolyticus lacking H+-translocating ATPase.

[1]  V. Skulachev,et al.  The ATP‐driven primary Na+ pump in subcellular vesicles of Vibrio alginolyticus , 1988, FEBS letters.

[2]  P. Dimroth,et al.  Characterization of the Na+-stimulated ATPase of Propionigenium modestum as an enzyme of the F1F0 type. , 1987, European journal of biochemistry.

[3]  M. Tsuda,et al.  Properties of adenosine triphosphate-hydrolyzing enzymes in membrane vesicles of Vibrio parahaemolyticus. , 1987, Chemical & pharmaceutical bulletin.

[4]  J. Konisky,et al.  Identification of a vanadate-sensitive, membrane-bound ATPase in the archaebacterium Methanococcus voltae , 1987, Journal of bacteriology.

[5]  M. Tsuda,et al.  Na+/adenosine co-transport in Vibrio parahaemolyticus. , 1987, Biochimica et biophysica acta.

[6]  M. Tsuda,et al.  A novel mechanism for utilization of extracellular AMP in Vibrio parahaemolyticus. , 1987, Biochemical and biophysical research communications.

[7]  V. Skulachev,et al.  The sodium cycle. I. Na+-dependent motility and modes of membrane energization in the marine alkalotolerant vibrio Alginolyticus. , 1986, Biochimica et biophysica acta.

[8]  V. Skulachev,et al.  The sodium cycle. II. Na+-coupled oxidative phosphorylation in Vibrio alginolyticus cells. , 1986, Biochimica et biophysica acta.

[9]  J. Lancaster,et al.  An electrogenic sodium‐translocating ATPase in Methanococcus voltae , 1986 .

[10]  M. Futai,et al.  Deletion of seven amino acid residues from the gamma subunit of Escherichia coli H+-ATPase causes total loss of F1 assembly on membranes. , 1985, Archives of biochemistry and biophysics.

[11]  T. Tsuchiya,et al.  Respiration-driven Na+ pump and Na+ circulation in Vibrio parahaemolyticus , 1985, Journal of bacteriology.

[12]  P. Dimroth,et al.  Life by a new decarboxylation‐dependent energy conservation mechanism with Na+ as coupling ion , 1984, The EMBO journal.

[13]  T. Unemoto,et al.  Growth of a marine Vibrio alginolyticus and moderately halophilic V. costicola becomes uncoupler resistant when the respiration-dependent Na+ pump functions , 1983, Journal of bacteriology.

[14]  T. Unemoto,et al.  A respiration-dependent primary sodium extrusion system functioning at alkaline pH in the marine bacterium Vibrio alginolyticus. , 1981, Biochemical and biophysical research communications.

[15]  S. Schuldiner,et al.  Sodium-proton antiport in isolated membrane vesicles of Escherichia coli. , 1978, Biochemistry.

[16]  L. Adler,et al.  The maintenance of the energized membrane state and its relation to active transport in Escherichia coli. , 1975, Biochimica et biophysica acta.

[17]  P. Davies,et al.  Effect of removal or modification of subunit polypeptides on the coupling factor and hydrolytic activities of the Ca2+ and Mg2+-activated adenosine triphosphatase of Escherichia coli , 1973 .

[18]  B. Rosen Restoration of Active Transport in an Mg2+-Adenosine Triphosphatase-Deficient Mutant of Escherichia coli , 1973, Journal of bacteriology.

[19]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[20]  O. H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.

[21]  C. H. Fiske,et al.  THE COLORIMETRIC DETERMINATION OF PHOSPHORUS , 1925 .