Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation

In this paper we present rigorous a posterioriL2 error bounds for reduced basis approximations of the unsteady viscous Burgers’ equation in one space dimension. The a posteriori error estimator, derived from standard analysis of the error-residual equation, comprises two key ingredients—both of which admit efficient Offline-Online treatment: the first is a sum over timesteps of the square of the dual norm of the residual; the second is an accurate upper bound (computed by the Successive Constraint Method) for the exponential-in-time stability factor. These error bounds serve both Offline for construction of the reduced basis space by a new POD-Greedy procedure and Online for verification of fidelity. The a posteriori error bounds are practicable for final times (measured in convective units) T≈O(1) and Reynolds numbers ν−1≫1; we present numerical results for a (stationary) steepening front for T=2 and 1≤ν−1≤200.

[1]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[2]  N. Nguyen,et al.  REDUCED BASIS APPROXIMATION AND A POSTERIORI ERROR ESTIMATION FOR THE PARAMETRIZED UNSTEADY BOUSSINESQ EQUATIONS , 2011 .

[3]  A. Quarteroni,et al.  Numerical solution of parametrized Navier–Stokes equations by reduced basis methods , 2007 .

[4]  Karen Willcox,et al.  Model Reduction for Large-Scale Systems with High-Dimensional Parametric Input Space , 2008, SIAM J. Sci. Comput..

[5]  K. ITO,et al.  Reduced Basis Method for Optimal Control of Unsteady Viscous Flows , 2001 .

[6]  D. Rovas,et al.  Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods , 2002 .

[7]  Max Gunzburger,et al.  Algorithmic and theoretical results on computation of incompressible viscous flows by finite element methods , 1985 .

[8]  Dimitrios V. Rovas,et al.  Reduced-basis output bound methods for parabolic problems , 2006 .

[9]  Michael B. Giles,et al.  Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..

[10]  J. Sørensen,et al.  Evaluation of POD-based decomposition techniques applied to parameter-dependent non-turbulent flows , 2000 .

[11]  Sidney Yip,et al.  Handbook of Materials Modeling , 2005 .

[12]  Max Gunzburger,et al.  POD and CVT-based reduced-order modeling of Navier-Stokes flows , 2006 .

[13]  Einar M. Rønquist,et al.  Reduced-basis modeling of turbulent plane channel flow , 2006 .

[14]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[15]  M. Gunzburger,et al.  Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data , 2007 .

[16]  George Shu Heng Pau,et al.  Feasibility and Competitiveness of a Reduced Basis Approach for Rapid Electronic Structure Calculations in Quantum Chemistry , 2006 .

[17]  S. Ravindran,et al.  A Reduced-Order Method for Simulation and Control of Fluid Flows , 1998 .

[18]  N. Nguyen,et al.  EFFICIENT REDUCED-BASIS TREATMENT OF NONAFFINE AND NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS , 2007 .

[19]  R. Temam Navier-Stokes Equations , 1977 .

[20]  D. Rovas,et al.  A Posteriori Error Bounds for Reduced-Basis Approximation of Parametrized Noncoercive and Nonlinear Elliptic Partial Differential Equations , 2003 .

[21]  T. A. Porsching,et al.  The reduced basis method for initial value problems , 1987 .

[22]  S. Ravindran,et al.  A Reduced Basis Method for Control Problems Governed by PDEs , 1998 .

[23]  Gianluigi Rozza,et al.  Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Parabolic PDEs: Application to Real‐Time Bayesian Parameter Estimation , 2010 .

[24]  A. Patera,et al.  A Successive Constraint Linear Optimization Method for Lower Bounds of Parametric Coercivity and Inf-Sup Stability Constants , 2007 .

[25]  Jens Nørkær Sørensen,et al.  Evaluation of Proper Orthogonal Decomposition-Based Decomposition Techniques Applied to Parameter-Dependent Nonturbulent Flows , 1999, SIAM J. Sci. Comput..

[26]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[27]  M. Grepl Reduced-basis approximation a posteriori error estimation for parabolic partial differential equations , 2005 .

[28]  Nguyen Ngoc Cuong,et al.  Certified Real-Time Solution of Parametrized Partial Differential Equations , 2005 .

[29]  Claes Johnson,et al.  Numerics and hydrodynamic stability: toward error control in computational fluid dynamics , 1995 .

[30]  R. LeVeque Numerical methods for conservation laws , 1990 .

[31]  A. Patera,et al.  Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds , 2003 .

[32]  Hantaek Bae Navier-Stokes equations , 1992 .

[33]  Daniel D. Joseph,et al.  Stability of fluid motions , 1976 .

[34]  A. Patera,et al.  A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations , 2005 .

[35]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[36]  B. Haasdonk,et al.  REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .

[37]  Charbel Farhat,et al.  On-Demand CFD-Based Aeroelastic Predictions Using a Database of Reduced-Order Bases and Models , 2009 .

[38]  L. E. Fraenkel,et al.  NAVIER-STOKES EQUATIONS (Chicago Lectures in Mathematics) , 1990 .

[39]  Kazufumi Ito,et al.  Reduced order feedback synthesis for viscous incompressible flows , 2001 .

[40]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[41]  Karl Kunisch,et al.  Control and estimation of distributed parameter systems , 1998 .

[42]  D. Joseph,et al.  Stability of fluid motions. I, II , 1976 .

[43]  I. Kevrekidis,et al.  Low‐dimensional models for complex geometry flows: Application to grooved channels and circular cylinders , 1991 .

[44]  Max Gunzburger,et al.  Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .

[45]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[46]  A. Patera,et al.  Certified real‐time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced‐basis a posteriori error bounds , 2005 .