Omariniite, Cu8Fe2ZnGe2S12, the germanium analogue of stannoidite, a new mineral species from Capillitas, Argentina

Abstract Omariniite, ideally Cu8Fe2ZnGe2S12, represents the Ge-analogue of stannoidite and was found in bornite-chalcocite-rich ores near the La Rosario vein of the Capillitas epithermal deposit, Catamarca Province, Argentina. The mineral is associated closely with three other Ge-bearing minerals (putzite, catamarcaite, rarely zincobriartite) and bornite, chalcocite, digenite, covellite, sphalerite, tennantite, luzonite, wittichenite, thalcusite and traces of mawsonite. The width of the seams rarely exceeds 60 μm, their length can attain several 100 μm. The mineral is opaque, orange-brown in polished section, has a metallic lustre and a brownish-black streak. It is brittle, and the fracture is irregular to subconchoidal. Neither cleavage nor parting are observable in the sections. In plane-polarized light omariniite is brownish-orange and has a weak pleochroism. Internal reflections are absent. The mineral is distinctly anisotropic with rotation tints varying between brownish-orange and greenish-brown. The average result of 45 electron-microprobe analyses is Cu 42.18(34), Fe 9.37(26), Zn 5.17(43), In 0.20(6), Ge 11.62(22), S 31.80(20), total 100.34(46) wt.%. The empirical formula, based on Σ(Me + S) = 25, is Cu8.04(Fe2.03In0.02)Σ2.05Zn0.96 Ge1.94S12.01, ideally Cu8 +Fe2 +Zn2+Ge2 4+S12 2-. Omariniite is orthorhombic, space group I222, with unit-cell parameters: a = 10.774(1), b = 5.3921(5), c = 16.085(2) Å, V = 934.5(2) Å3, a:b:c = 1.9981:1:2.9831, Z = 2. X-ray single-crystal studies (R 1 = 0.023) revealed the structure to be a sphalerite derivative identical to that of stannoidite. Omariniite is named after Dr. Ricardo Héctor Omarini (1946–2015), Professor at the University of Salta, for his numerous contributions to the geology of Argentina.

[1]  Frédéric Hatert,et al.  New minerals and nomenclature modifications approved in 2015 and 2016 , 2016, Mineralogical Magazine.

[2]  S. Hackney,et al.  New minerals and nomenclature modifications approved in 2016 , 2016 .

[3]  H. Murakami,et al.  ISHIHARAITE, (Cu,Ga,Fe,In,Zn)S, A NEW MINERAL FROM THE CAPILLITAS MINE, NORTHWESTERN ARGENTINA , 2014 .

[4]  F. Bellatreccia,et al.  IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) , 2016, Mineralogical Magazine.

[5]  W. G. Marshall,et al.  THE LOW-TEMPERATURE AND HIGH-PRESSURE THERMOELASTIC AND STRUCTURAL PROPERTIES OF CHALCOPYRITE, CuFeS2 , 2011 .

[6]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[7]  R. Höll,et al.  Metallogenesis of germanium—A review , 2007 .

[8]  E. Makovicky,et al.  CATAMARCAITE, Cu6GeWS8, A NEW GERMANIUM SULFIDE MINERAL SPECIES FROM CAPILLITAS, CATAMARCA, ARGENTINA: DESCRIPTION, PARAGENESIS AND CRYSTAL STRUCTURE , 2006 .

[9]  R. Rosenberg,et al.  The oxidation states of copper and iron in mineral sulfides, and the oxides formed on initial exposure of chalcopyrite and bornite to air , 2006 .

[10]  T. Armbruster,et al.  PUTZITE, (Cu4.7Ag3.3)∑8GeS6, A NEW MINERAL SPECIES FROM CAPILLITAS, CATAMARCA, ARGENTINA: DESCRIPTION AND CRYSTAL STRUCTURE , 2004 .

[11]  F. Melcher THE OTAVI MOUNTAIN LAND IN NAMIBIA: TSUMEB, GERMANIUM AND SNOWBALL EARTH , 2003 .

[12]  W. Paar,et al.  Germanium mineralization at Capillitas, Catamarca Province, Argentina , 2002 .

[13]  G. Nolze,et al.  POWDER CELL– a program for the representation and manipulation of crystal structures and calculation of the resulting X‐ray powder patterns , 1996 .

[14]  A. Wilson,et al.  International Tables for Crystallography. Volume C: Mathematical, Physical and Chemical Tables. Kluwer Academic Publishers, Dordrecht/Boston/London 1992 (published for the International Union of Crystallography), 883 Seiten, ISBN 0‐792‐3‐16‐38X , 1993 .

[15]  Michael O'Keeffe,et al.  Bond-valence parameters for solids , 1991 .

[16]  G. Eulenberger Die Kristallstruktur der Tieftemperaturmodifikation von Ag8GeS6 , 1977 .

[17]  A. Kato,et al.  Moessbauer effect study of 57 Fe and 119 Sn in stannite, stannoidite, and mawsonite , 1976 .

[18]  Y. Takéuchi,et al.  The superstructure of stannoidite , 1976 .