Beyond comparisons of means: understanding changes in gene expression at the single-cell level

Traditional differential expression tools are limited to detecting changes in overall expression, and fail to uncover the rich information provided by single-cell level data sets. We present a Bayesian hierarchical model that builds upon BASiCS to study changes that lie beyond comparisons of means, incorporating built-in normalization and quantifying technical artifacts by borrowing information from spike-in genes. Using a probabilistic approach, we highlight genes undergoing changes in cell-to-cell heterogeneity but whose overall expression remains unchanged. Control experiments validate our method’s performance and a case study suggests that novel biological insights can be revealed. Our method is implemented in R and available at https://github.com/catavallejos/BASiCS.

[1]  J Steinkamp,et al.  Cell heterogeneity during the cell cycle , 1982, Journal of cellular physiology.

[2]  A. Clemens Protein Phosphorylation in Cell Growth Regulation , 1996 .

[3]  P. Russell,et al.  DNA replication checkpoint , 2001, Current Biology.

[4]  Deepayan Sarkar,et al.  Detecting differential gene expression with a semiparametric hierarchical mixture method. , 2004, Biostatistics.

[5]  S Richardson,et al.  Tail posterior probability for inference in pairwise and multiclass gene expression data. , 2007, Biometrics.

[6]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[7]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[8]  Gordon K. Smyth,et al.  Testing significance relative to a fold-change threshold is a TREAT , 2009, Bioinform..

[9]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[10]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[11]  M. Salit,et al.  Synthetic Spike-in Standards for Rna-seq Experiments Material Supplemental Open Access License Commons Creative , 2022 .

[12]  Dirk Eddelbuettel,et al.  Rcpp: Seamless R and C++ Integration , 2011 .

[13]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[14]  Davis J. McCarthy,et al.  Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation , 2012, Nucleic acids research.

[15]  David A. Orlando,et al.  Revisiting Global Gene Expression Analysis , 2012, Cell.

[16]  Aleksandra A. Kolodziejczyk,et al.  Accounting for technical noise in single-cell RNA-seq experiments , 2013, Nature Methods.

[17]  Shintaro Katayama,et al.  SAMstrt: statistical test for differential expression in single-cell transcriptome with spike-in normalization , 2013, Bioinform..

[18]  P. Kharchenko,et al.  Bayesian approach to single-cell differential expression analysis , 2014, Nature Methods.

[19]  Gioele La Manno,et al.  Quantitative single-cell RNA-seq with unique molecular identifiers , 2013, Nature Methods.

[20]  I. Amit,et al.  Massively Parallel Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues into Cell Types , 2014, Science.

[21]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[22]  A. Oudenaarden,et al.  Validation of noise models for single-cell transcriptomics , 2014, Nature Methods.

[23]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[24]  B. Tjaden,et al.  De novo assembly of bacterial transcriptomes from RNA-seq data , 2015, Genome Biology.

[25]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[26]  P. Linsley,et al.  MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data , 2015, Genome Biology.

[27]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[28]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[29]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[30]  Fabian J Theis,et al.  Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells , 2015, Nature Biotechnology.

[31]  Aleksandra A. Kolodziejczyk,et al.  Single Cell RNA-Sequencing of Pluripotent States Unlocks Modular Transcriptional Variation , 2015, Cell stem cell.

[32]  Catalina A. Vallejos,et al.  BASiCS: Bayesian Analysis of Single-Cell Sequencing Data , 2015, PLoS Comput. Biol..