Evidence for Direct Activation of mTORC2 Kinase Activity by Phosphatidylinositol 3,4,5-Trisphosphate*

mTORC2 (mammalian target of rapamycin complex 2) plays important roles in signal transduction by regulating an array of downstream effectors, including protein kinase AKT. However, its regulation by upstream regulators remains poorly characterized. Although phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) is known to regulate the phosphorylation of AKT Ser473, the hydrophobic motif (HM) site, by mTORC2, it is not clear whether PtdIns(3,4,5)P3 can directly regulate mTORC2 kinase activity. Here, we used two membrane-docked AKT mutant proteins, one with and the other without the pleckstrin homology (PH) domain, as substrates for mTORC2 to dissect the roles of PtdIns(3,4,5)P3 in AKT HM phosphorylation in cultured cells and in vitro kinase assays. In HEK293T cells, insulin and constitutively active mutants of small GTPase H-Ras and PI3K could induce HM phosphorylation of both AKT mutants, which was blocked by the PI3K inhibitor LY294002. Importantly, PtdIns(3,4,5)P3 was able to stimulate the phosphorylation of both AKT mutants by immunoprecipitated mTOR2 complexes in an in vitro kinase assay. In both in vivo and in vitro assays, the AKT mutant containing the PH domain appeared to be a better substrate than the one without the PH domain. Therefore, these results suggest that PtdIns(3,4,5)P3 can regulate HM phosphorylation by mTORC2 via multiple mechanisms. One of the mechanisms is to directly stimulate the kinase activity of mTORC2.

[1]  D. Fingar,et al.  mTOR Ser-2481 Autophosphorylation Monitors mTORC-specific Catalytic Activity and Clarifies Rapamycin Mechanism of Action* , 2009, The Journal of Biological Chemistry.

[2]  P. Polak,et al.  mTOR and the control of whole body metabolism. , 2009, Current opinion in cell biology.

[3]  Gerard Manning,et al.  TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. , 2009, Cancer research.

[4]  D. Alessi,et al.  mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). , 2008, The Biochemical journal.

[5]  A. Newton,et al.  The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C , 2008, The EMBO journal.

[6]  K. Inoki,et al.  Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling , 2008, The EMBO journal.

[7]  E. Jacinto,et al.  TOR regulation of AGC kinases in yeast and mammals. , 2008, The Biochemical journal.

[8]  M. Yanagida,et al.  Rapamycin sensitivity of the Schizosaccharomyces pombe tor2 mutant and organization of two highly phosphorylated TOR complexes by specific and common subunits , 2007, Genes to cells : devoted to molecular & cellular mechanisms.

[9]  T. Griffin,et al.  PRR5, a Novel Component of mTOR Complex 2, Regulates Platelet-derived Growth Factor Receptor β Expression and Signaling* , 2007, Journal of Biological Chemistry.

[10]  C. Proud,et al.  PRAS40 Is a Target for Mammalian Target of Rapamycin Complex 1 and Is Required for Signaling Downstream of This Complex* , 2007, Journal of Biological Chemistry.

[11]  D. Alessi,et al.  Identification of Protor as a novel Rictor-binding component of mTOR complex-2. , 2007, The Biochemical journal.

[12]  D. Guertin,et al.  Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. , 2006, Developmental cell.

[13]  N. Sonenberg,et al.  mTOR, translation initiation and cancer , 2006, Oncogene.

[14]  K. Inoki,et al.  Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. , 2006, Genes & development.

[15]  J. Qin,et al.  SIN1/MIP1 Maintains rictor-mTOR Complex Integrity and Regulates Akt Phosphorylation and Substrate Specificity , 2006, Cell.

[16]  J. Woo,et al.  Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability. , 2006, Developmental cell.

[17]  Jacob D. Jaffe,et al.  mSin1 Is Necessary for Akt/PKB Phosphorylation, and Its Isoforms Define Three Distinct mTORC2s , 2006, Current Biology.

[18]  D. Sabatini,et al.  Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. , 2006, Molecular cell.

[19]  M. Hall,et al.  TOR Signaling in Growth and Metabolism , 2006, Cell.

[20]  A. Schröder,et al.  Phosphatidylinositol 3-Kinase Functions as a Ras Effector in the Signaling Cascade That Regulates Dephosphorylation of the Actin-Remodeling Protein Cofilin after Costimulation of Untransformed Human T Lymphocytes1 , 2006, The Journal of Immunology.

[21]  J. Yates,et al.  TOR complex 2 integrates cell movement during chemotaxis and signal relay in Dictyostelium. , 2005, Molecular biology of the cell.

[22]  D. Guertin,et al.  Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR Complex , 2005, Science.

[23]  W. Kolch,et al.  Oncogenic K-RAS is required to maintain changes in cytoskeletal organization, adhesion, and motility in colon cancer cells. , 2005, Cancer research.

[24]  R. Loewith,et al.  Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive , 2004, Nature Cell Biology.

[25]  Johan Auwerx,et al.  Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity , 2004, Nature.

[26]  K. Guan,et al.  Transformation Potential of Ras Isoforms Correlates with Activation of Phosphatidylinositol 3-Kinase but Not ERK* , 2004, Journal of Biological Chemistry.

[27]  D. Guertin,et al.  Rictor, a Novel Binding Partner of mTOR, Defines a Rapamycin-Insensitive and Raptor-Independent Pathway that Regulates the Cytoskeleton , 2004, Current Biology.

[28]  N. C. Price,et al.  Binding of phosphatidylinositol 3,4,5-trisphosphate to the pleckstrin homology domain of protein kinase B induces a conformational change. , 2003, The Biochemical journal.

[29]  Paul Tempst,et al.  GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. , 2003, Molecular cell.

[30]  M. Birnbaum,et al.  Identification of a Proline-rich Akt Substrate as a 14-3-3 Binding Partner* , 2003, The Journal of Biological Chemistry.

[31]  J. Crespo,et al.  Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. , 2002, Molecular cell.

[32]  J. Avruch,et al.  Raptor, a Binding Partner of Target of Rapamycin (TOR), Mediates TOR Action , 2002, Cell.

[33]  D. Sabatini,et al.  mTOR Interacts with Raptor to Form a Nutrient-Sensitive Complex that Signals to the Cell Growth Machinery , 2002, Cell.

[34]  A. Marette,et al.  Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells. , 2001, The Journal of biological chemistry.

[35]  R. Firtel,et al.  A novel Ras-interacting protein required for chemotaxis and cyclic adenosine monophosphate signal relay in Dictyostelium. , 1999, Molecular biology of the cell.

[36]  L. Pirola,et al.  Bifurcation of lipid and protein kinase signals of PI3Kgamma to the protein kinases PKB and MAPK. , 1998, Science.

[37]  M. Hall,et al.  TOR2 is required for organization of the actin cytoskeleton in yeast. , 1996, Proceedings of the National Academy of Sciences of the United States of America.