Structural and Functional Insights into GluK3-kainate Receptor Desensitization and Recovery

[1]  Anton V. Sinitskiy,et al.  Intradomain Interactions in an NMDA Receptor Fragment Mediate N-Glycan Processing and Conformational Sampling. , 2019, Structure.

[2]  K. Takamiya,et al.  N‐glycosylation of the AMPA‐type glutamate receptor regulates cell surface expression and tetramer formation affecting channel function , 2018, Journal of neurochemistry.

[3]  Young Ho Suh,et al.  N-Glycosylation Regulates the Trafficking and Surface Mobility of GluN3A-Containing NMDA Receptors , 2018, Front. Mol. Neurosci..

[4]  Randy J Read,et al.  Real-space refinement in PHENIX for cryo-EM and crystallography , 2018, bioRxiv.

[5]  M. Mayer,et al.  Preferential assembly of heteromeric kainate and AMPA receptor amino terminal domains , 2017, eLife.

[6]  B. Copits,et al.  N‐glycan content modulates kainate receptor functional properties , 2017, The Journal of physiology.

[7]  E. C. Twomey,et al.  Channel opening and gating mechanism in AMPA-subtype glutamate receptors , 2017, Nature.

[8]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[9]  David J. Fleet,et al.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination , 2017, Nature Methods.

[10]  E. Gouaux,et al.  Structure and symmetry inform gating principles of ionotropic glutamate receptors , 2017, Neuropharmacology.

[11]  Vijay S. Pande,et al.  Computationally Discovered Potentiating Role of Glycans on NMDA Receptors , 2016, Scientific Reports.

[12]  Rafael Fernandez-Leiro,et al.  A pipeline approach to single-particle processing in RELION , 2016, bioRxiv.

[13]  E. Schuman,et al.  Unconventional secretory processing diversifies neuronal ion channel properties , 2016, eLife.

[14]  S. Subramaniam,et al.  Structural basis of kainate subtype glutamate receptor desensitization , 2016, Nature.

[15]  L. Vyklický,et al.  Biochemical and electrophysiological characterization of N‐glycans on NMDA receptor subunits , 2016, Journal of neurochemistry.

[16]  J. García-Nafría,et al.  Structure and organization of heteromeric AMPA-type glutamate receptors , 2016, Science.

[17]  Kai Zhang,et al.  Gctf: Real-time CTF determination and correction , 2015, bioRxiv.

[18]  Young Ho Suh,et al.  Two N-glycosylation Sites in the GluN1 Subunit Are Essential for Releasing N-methyl-d-aspartate (NMDA) Receptors from the Endoplasmic Reticulum* , 2015, The Journal of Biological Chemistry.

[19]  E. Gouaux,et al.  Screening and large-scale expression of membrane proteins in mammalian cells for structural studies , 2014, Nature Protocols.

[20]  J. Kastrup,et al.  Molecular Recognition of Two 2,4‐syn‐Functionalized (S)‐Glutamate Analogues by the Kainate Receptor GluK3 Ligand Binding Domain , 2014, ChemMedChem.

[21]  E. Gouaux,et al.  Structure and Dynamics of AMPA Receptor GluA2 in Resting, Pre-Open, and Desensitized States , 2014, Cell.

[22]  Prashant Rao,et al.  Structural mechanism of glutamate receptor activation and desensitization , 2014, Nature.

[23]  R. Sakai,et al.  Modulation of ionotropic glutamate receptor function by vertebrate galectins , 2014, The Journal of physiology.

[24]  Hemant D. Tagare,et al.  The Local Resolution of Cryo-EM Density Maps , 2013, Nature Methods.

[25]  J. Lerma,et al.  Kainate Receptors in Health and Disease , 2013, Neuron.

[26]  M. Mayer,et al.  Functional insights from glutamate receptor ion channel structures. , 2013, Annual review of physiology.

[27]  M. Mayer,et al.  Zinc Potentiates GluK3 Glutamate Receptor Function by Stabilizing the Ligand Binding Domain Dimer Interface , 2012, Neuron.

[28]  Y. Sugita,et al.  Conformational flexibility of N-glycans in solution studied by REMD simulations , 2012, Biophysical Reviews.

[29]  J. Kastrup,et al.  Binding site and interlobe interactions of the ionotropic glutamate receptor GluK3 ligand binding domain revealed by high resolution crystal structure in complex with (S)-glutamate. , 2011, Journal of structural biology.

[30]  Owen Johnson,et al.  iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM , 2011, Acta crystallographica. Section D, Biological crystallography.

[31]  L. Bunch,et al.  Medicinal chemistry of competitive kainate receptor antagonists. , 2011, ACS chemical neuroscience.

[32]  M. Mayer,et al.  Crystal structures of the glutamate receptor ion channel GluK3 and GluK5 amino-terminal domains. , 2010, Journal of molecular biology.

[33]  R. Dingledine,et al.  Glutamate Receptor Ion Channels: Structure, Regulation, and Function , 2010, Pharmacological Reviews.

[34]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[35]  E. Gouaux,et al.  X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor , 2009, Nature.

[36]  D. Perrais,et al.  Atypical Functional Properties of GluK3-Containing Kainate Receptors , 2009, The Journal of Neuroscience.

[37]  D. Jane,et al.  Antagonism of recombinant and native GluK3-containing kainate receptors , 2009, Neuropharmacology.

[38]  C. Mulle,et al.  Presynaptic glutamate receptors: physiological functions and mechanisms of action , 2008, Nature Reviews Neuroscience.

[39]  D. Bowie Ionotropic glutamate receptors & CNS disorders. , 2008, CNS & neurological disorders drug targets.

[40]  S. Heinemann,et al.  GluR7 is an essential subunit of presynaptic kainate autoreceptors at hippocampal mossy fiber synapses , 2007, Proceedings of the National Academy of Sciences.

[41]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[42]  H. Schiffer,et al.  Association of the human kainate receptor GluR7 gene (GRIK3) with recurrent major depressive disorder , 2007, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[43]  Christian Rosenmund,et al.  Interdomain Interactions in AMPA and Kainate Receptors Regulate Affinity for Glutamate , 2006, The Journal of Neuroscience.

[44]  Eric Gouaux,et al.  Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. , 2006, Structure.

[45]  S. Heinemann,et al.  Structure of the kainate receptor subunit GluR6 agonist-binding domain complexed with domoic acid. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[47]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[48]  Juan Lerma,et al.  Roles and rules of kainate receptors in synaptic transmission , 2003, Nature Reviews Neuroscience.

[49]  J. Rossier,et al.  Characterization of the functional role of the N‐glycans in the AMPA receptor ligand‐binding domain , 2003, Journal of neurochemistry.

[50]  M. Baudry,et al.  The role of glycosylation in ionotropic glutamate receptor ligand binding, function, and trafficking , 2000, Cellular and Molecular Life Sciences CMLS.

[51]  A. Rodríguez-Moreno,et al.  Activation and desensitization properties of native and recombinant kainate receptors , 1998, Neuropharmacology.

[52]  S. Heinemann,et al.  Rat GluR7 and a Carboxy-Terminal Splice Variant, GluR7b, Are Functional Kainate Receptor Subunits with a Low Sensitivity to Glutamate , 1997, Neuron.

[53]  M. Hollmann,et al.  N-Glycosylation is not a prerequisite for glutamate receptor function but Is essential for lectin modulation. , 1997, Molecular pharmacology.

[54]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[55]  B. Sakmann,et al.  The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits , 1992, Neuron.

[56]  P. Seeburg,et al.  Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells , 1991, Nature.