Abstraction in Fixpoint Logic

We present a theory of abstraction for the framework of parameterised Boolean equation systems, a first-order fixpoint logic. Parameterised Boolean equation systems can be used to solve a variety of problems in verification. We study the capabilities of the abstraction theory by comparing it to an abstraction theory for Generalised Kripke modal Transition Systems (GTSs). We show that for model checking the modal μ-calculus, our abstractions can be exponentially more succinct than GTSs and our theory is as complete as the GTS framework for abstraction. Furthermore, we investigate the completeness of our theory irrespective of the encoded decision problem. We illustrate the potential of our theory through case studies using the first-order modal μ-calculus and a real-time extension thereof, conducted using a prototype implementation of a new syntactic transformation for parameterised Boolean equation systems.

[1]  Tim A. C. Willemse,et al.  Consistent Correlations for Parameterised Boolean Equation Systems with Applications in Correctness Proofs for Manipulations , 2010, CONCUR.

[2]  Radha Jagadeesan,et al.  Three-valued abstractions of games: uncertainty, but with precision , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[3]  Rance Cleaveland,et al.  Fast Generic Model-Checking for Data-Based Systems , 2005, FORTE.

[4]  Wieslaw Zielonka,et al.  Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees , 1998, Theor. Comput. Sci..

[5]  Kedar S. Namjoshi,et al.  Automata as Abstractions , 2005, VMCAI.

[6]  Dennis Dams,et al.  Abstract interpretation and partition refinement for model checking , 1996 .

[7]  Sharon Shoham,et al.  Local abstraction–refinement for the μ-calculus , 2011, International Journal on Software Tools for Technology Transfer.

[8]  Colin Stirling,et al.  Modal Mu-Calculi , 2001 .

[9]  Jaco van de Pol,et al.  An abstract interpretation toolkit for μCRL , 2005, Formal Methods Syst. Des..

[10]  Tim A. C. Willemse,et al.  Expressiveness and Completeness in Abstraction , 2012, EXPRESS/SOS.

[11]  Jan Friso Groote,et al.  Parameterised boolean equation systems , 2005, Theor. Comput. Sci..

[12]  Radu Mateescu,et al.  CADP 2006: A Toolbox for the Construction and Analysis of Distributed Processes , 2007, CAV.

[13]  Tim A. C. Willemse,et al.  Consistent Consequence for Boolean Equation Systems , 2012, SOFSEM.

[14]  Radu Mateescu,et al.  A Model Checking Language for Concurrent Value-Passing Systems , 2008, FM.

[15]  E. Allen Emerson,et al.  An Automata Theoretic Decision Procedure for the Propositional Mu-Calculus , 1989, Inf. Comput..

[16]  Thomas A. Henzinger,et al.  Alternating Refinement Relations , 1998, CONCUR.

[17]  Jan Friso Groote,et al.  Model-checking processes with data , 2005, Sci. Comput. Program..

[18]  Bas Luttik,et al.  Proof Graphs for Parameterised Boolean Equation Systems , 2013, CONCUR.

[19]  Kedar S. Namjoshi,et al.  The existence of finite abstractions for branching time model checking , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[20]  Harald Fecher,et al.  Comparing disjunctive modal transition systems with an one-selecting variant , 2008, J. Log. Algebraic Methods Program..

[21]  K. Deimling Fixed Point Theory , 2008 .

[22]  Jja Jeroen Keiren,et al.  Advanced reduction techniques for model checking , 2013 .

[23]  Edmund M. Clarke,et al.  Model checking and abstraction , 1994, TOPL.

[24]  Simona Orzan,et al.  Static Analysis Techniques for Parameterised Boolean Equation Systems , 2009, TACAS.

[25]  María-del-Mar Gallardo,et al.  Implementing Influence Analysis Using Parameterised Boolean Equation Systems , 2006, Second International Symposium on Leveraging Applications of Formal Methods, Verification and Validation (isola 2006).

[26]  Perdita Stevens Abstract Games for Infinite State Processes , 1998, CONCUR.

[27]  Radha Jagadeesan,et al.  Three-valued abstractions of games: uncertainty, but with precision , 2004, LICS 2004.

[28]  D. Sangiorgi Introduction to Bisimulation and Coinduction , 2011 .

[29]  Tim A. C. Willemse,et al.  Verification of reactive systems via instantiation of Parameterised Boolean Equation Systems , 2011, Inf. Comput..

[30]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[31]  Erik P. de Vink,et al.  An Overview of the mCRL2 Toolset and Its Recent Advances , 2013, TACAS.

[32]  Orna Grumberg,et al.  3-Valued Abstraction: More Precision at Less Cost , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[33]  Jan Friso Groote,et al.  Verification of Temporal Properties of Processes in a Setting with Data , 1998, AMAST.

[34]  Jaco van de Pol,et al.  Equivalence Checking for Infinite Systems Using Parameterized Boolean Equation Systems , 2007, CONCUR.

[35]  Igor Walukiewicz,et al.  Pushdown Processes: Games and Model-Checking , 1996, Inf. Comput..

[36]  Cliff B. Jones,et al.  Programming Languages and Their Definition , 1984, Lecture Notes in Computer Science.

[37]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[38]  Angelika Mader,et al.  Verification of modal properties using Boolean equation systems , 1997 .

[39]  Kedar S. Namjoshi Abstraction for Branching Time Properties , 2003, CAV.

[40]  Patrick Cousot,et al.  Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints , 1977, POPL.

[41]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[42]  Kim G. Larsen,et al.  Equation solving using modal transition systems , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[43]  Simona Orzan,et al.  Invariants for Parameterised Boolean Equation Systems , 2008, Theor. Comput. Sci..

[44]  Radha Jagadeesan,et al.  Abstraction-Based Model Checking Using Modal Transition Systems , 2001, CONCUR.

[45]  Dexter Kozen,et al.  Results on the Propositional µ-Calculus , 1982, ICALP.

[46]  Patrick Cousot,et al.  Partial Completeness of Abstract Fixpoint Checking , 2000, SARA.

[47]  Huimin Lin,et al.  Symbolic Transition Graph with Assignment , 1996, CONCUR.