On continuity of solutions for parabolic control systems and input-to-state stability

[1]  李幼升,et al.  Ph , 1989 .

[2]  George Weiss,et al.  Admissible observation operators for linear semigroups , 1989 .

[3]  George Weiss,et al.  Admissibility of unbounded control operators , 1989 .

[4]  George Weiss Two conjectures on the admissibility of control operators , 1991 .

[5]  J. Baillon,et al.  Examples of unbounded imaginary powers of operators , 1991 .

[6]  Jan van Neerven,et al.  The Adjoint of a Semigroup of Linear Operators , 1992 .

[7]  M. Cowling,et al.  Banach space operators with a bounded H∞ functional calculus , 1996, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[8]  The Similarity Problem for Bounded Analytic Semigroups on Hilbert Space , 1998 .

[9]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[10]  The $H^{\infty}-$calculus and sums of closed operators , 2000, math/0010155.

[11]  N. Kalton,et al.  The H ∞ −calculus and sums of closed operators , 2001 .

[12]  Lutz Weis,et al.  Operator–valued Fourier multiplier theorems and maximal $L_p$-regularity , 2001 .

[13]  Jonathan R. Partington,et al.  The Weiss conjecture on admissibility of observation operators for contraction semigroups , 2001 .

[14]  Jonathan R. Partington,et al.  ADMISSIBLE AND WEAKLY ADMISSIBLE OBSERVATION OPERATORS FOR THE RIGHT SHIFT SEMIGROUP , 2002, Proceedings of the Edinburgh Mathematical Society.

[15]  Christian Le Merdy,et al.  The Weiss Conjecture for Bounded Analytic Semigroups , 2003 .

[16]  Hans Zwart,et al.  Weak admissibility does not imply admissibility for analytic semigroups , 2003, Syst. Control. Lett..

[17]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[18]  B. Haak Kontrolltheorie in Banachräumen und quadratische Abschätzungen , 2004 .

[19]  Jonathan R. Partington,et al.  Admissibility of Control and Observation Operators for Semigroups: A Survey , 2004 .

[20]  Hans Zwart,et al.  Counterexamples Concerning Observation Operators for C0-Semigroups , 2004, SIAM J. Control. Optim..

[21]  Markus Haase,et al.  The Functional Calculus for Sectorial Operators , 2006 .

[22]  L. Weis The H ∞ Holomorphic Functional Calculus for Sectorial Operators — a Survey , 2006 .

[23]  Bernhard H. Haak,et al.  Weighted Admissibility and Wellposedness of Linear Systems in Banach Spaces , 2006, SIAM J. Control. Optim..

[24]  M. Fowler,et al.  Function Spaces , 2022 .

[25]  G. Weiss,et al.  Observation and Control for Operator Semigroups , 2009 .

[26]  T. Eisner Stability of Operators and Operator Semigroups , 2010 .

[27]  Bounit Hamid,et al.  A direct approach to the Weiss conjecture for bounded analytic semigroups , 2010 .

[28]  H. Logemann,et al.  The Circle Criterion and Input-to-State Stability , 2011, IEEE Control Systems.

[29]  Sergey Dashkovskiy,et al.  Input-to-state stability of infinite-dimensional control systems , 2012, Mathematics of Control, Signals, and Systems.

[30]  Bernhard H. Haak,et al.  SQUARE FUNCTION ESTIMATES AND FUNCTIONAL CALCULI , 2013, 1311.0453.

[31]  S. Fackler On the structure of semigroups on Lp with a bounded H∞‐calculus , 2013, 1310.4672.

[32]  Hiroshi Ito,et al.  Characterizations of integral input-to-state stability for bilinear systems in infinite dimensions , 2014, 1406.2458.

[33]  N. Kalton,et al.  The $H^{\infty}$-Functional Calculus and Square Function Estimates , 2014, 1411.0472.

[34]  G. Godefroy,et al.  The H∞-Functional Calculus and Square Function Estimates , 2015 .

[35]  Iasson Karafyllis,et al.  ISS with Respect to Boundary Disturbances for 1-D Parabolic PDEs , 2015, IEEE Transactions on Automatic Control.

[36]  Iasson Karafyllis,et al.  ISS In Different Norms For 1-D Parabolic Pdes With Boundary Disturbances , 2016, SIAM J. Control. Optim..

[37]  Jonathan R. Partington,et al.  Infinite-Dimensional Input-to-State Stability and Orlicz Spaces , 2016, SIAM J. Control. Optim..

[38]  Fabian R. Wirth,et al.  Characterizations of Input-to-State Stability for Infinite-Dimensional Systems , 2017, IEEE Transactions on Automatic Control.

[39]  Felix L. Schwenninger,et al.  Strong input-to-state stability for infinite-dimensional linear systems , 2017, Math. Control. Signals Syst..

[40]  Jun Zheng,et al.  Input-to-state stability with respect to boundary disturbances for a class of semi-linear parabolic equations , 2017, Autom..