Image Retrieval with Relevance Feedback based on Genetic Programming

This paper presents a new content-based image retrieval framework with relevance feedback. This framework employs Genetic Programming to discover a combination of descriptors that better characterizes the user perception of image similarity. Several experiments were conducted to validate the proposed framework. These experiments employed three different image databases and color, shape, and texture descriptors to represent the content of database images. The proposed framework was compared with three other relevance feedback methods regarding their efficiency and effectiveness in image retrieval tasks. Experiment results demonstrate the superiority of the proposed method.

[1]  King-Sun Fu,et al.  Shape Discrimination Using Fourier Descriptors , 1977, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Weiguo Fan,et al.  Learning to advertise , 2006, SIGIR.

[3]  LeeTai Sing Image Representation Using 2D Gabor Wavelets , 1996 .

[4]  Bir Bhanu,et al.  Object detection in multi-modal images using genetic programming , 2004, Appl. Soft Comput..

[5]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[6]  Agma J. M. Traina,et al.  Constrained Aggregate Similarity Queries in Metric Spaces , 2007, SBBD.

[7]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[8]  Edward Y. Chang,et al.  Support vector machine active learning for image retrieval , 2001, MULTIMEDIA '01.

[9]  Fatos T. Yarman-Vural,et al.  BAS: a perceptual shape descriptor based on the beam angle statistics , 2003, Pattern Recognit. Lett..

[10]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Pável Calado,et al.  A combined component approach for finding collection-adapted ranking functions based on genetic programming , 2007, SIGIR.

[12]  Nikolaos D. Doulamis,et al.  Evaluation of relevance feedback schemes in content-based in retrieval systems , 2006, Signal Process. Image Commun..

[13]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[14]  Yasufumi Takama,et al.  Genetic algorithm-based relevance feedback for image retrieval using local similarity patterns , 2003, Inf. Process. Manag..

[15]  David B. Fogel,et al.  Evolution-ary Computation 1: Basic Algorithms and Operators , 2000 .

[16]  Weiguo Fan,et al.  A generic ranking function discovery framework by genetic programming for information retrieval , 2004, Inf. Process. Manag..

[17]  Thomas S. Huang,et al.  Optimizing learning in image retrieval , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[18]  Shih-Fu Chang,et al.  Image Retrieval: Current Techniques, Promising Directions, and Open Issues , 1999, J. Vis. Commun. Image Represent..

[19]  Remco C. Veltkamp,et al.  Content-based image retrieval systems: A survey , 2000 .

[20]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[21]  S. Sural,et al.  Characteristics of weighted feature vector in content-based image retrieval applications , 2004, International Conference on Intelligent Sensing and Information Processing, 2004. Proceedings of.

[22]  Edward A. Fox,et al.  A new framework to combine descriptors for content-based image retrieval , 2005, CIKM '05.

[23]  Longin Jan Latecki,et al.  Graph-based Approach , 1998 .

[24]  Thomas S. Huang,et al.  Relevance feedback in image retrieval: A comprehensive review , 2003, Multimedia Systems.

[25]  Matthieu Cord,et al.  Stochastic exploration and active learning for image retrieval , 2007, Image Vis. Comput..

[26]  Avinash C. Kak,et al.  Content-based image retrieval from large medical databases , 2002, Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.

[27]  Ricardo da Silva Torres,et al.  Contour salience descriptors for effective image retrieval and analysis , 2007, Image Vis. Comput..

[28]  Ying Liu,et al.  A survey of content-based image retrieval with high-level semantics , 2007, Pattern Recognit..

[29]  Naphtali Rishe,et al.  Content-based image retrieval , 1995, Multimedia Tools and Applications.

[30]  Michael Unser,et al.  A family of polynomial spline wavelet transforms , 1993, Signal Process..

[31]  Edward A. Fox,et al.  Combining structural and citation-based evidence for text classification , 2004, CIKM '04.

[32]  Markus A. Stricker,et al.  Similarity of color images , 1995, Electronic Imaging.

[33]  S. Griffis EDITOR , 1997, Journal of Navigation.

[34]  Ingemar J. Cox,et al.  The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments , 2000, IEEE Trans. Image Process..

[35]  Longin Jan Latecki,et al.  Shape Similarity Measure Based on Correspondence of Visual Parts , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Ricardo da Silva Torres,et al.  Content-Based Image Retrieval: Theory and Applications , 2006, RITA.

[37]  Senmiao Yuan,et al.  A novel relevance feedback method in content-based image retrieval , 2004, International Conference on Information Technology: Coding and Computing, 2004. Proceedings. ITCC 2004..

[38]  Peter C. Fishburn,et al.  Nonlinear preference and utility theory , 1988 .

[39]  Luciano da Fontoura Costa,et al.  A graph-based approach for multiscale shape analysis , 2004, Pattern Recognit..

[40]  K.R. Namuduri,et al.  Compact combination of MPEG-7 color and texture descriptors for image retrieval , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..

[41]  Edward A. Fox,et al.  Integrating Image and Spatial Data for Biodiversity Information Management , 2007 .

[42]  Wen Gao,et al.  Adaptive relevance feedback based on Bayesian inference for image retrieval , 2005, Signal Process..

[43]  Edward A. Fox,et al.  A genetic programming framework for content-based image retrieval , 2009, Pattern Recognit..

[44]  Michael Stonebraker,et al.  Chabot: Retrieval from a Relational Database of Images , 1995, Computer.

[45]  Mario A. Nascimento,et al.  A compact and efficient image retrieval approach based on border/interior pixel classification , 2002, CIKM '02.

[46]  Qi Tian,et al.  Incorporate support vector machines to content-based image retrieval with relevance feedback , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[47]  Tai Sing Lee,et al.  Image Representation Using 2D Gabor Wavelets , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Theodosios Pavlidis,et al.  Optimal Correspondence of String Subsequences , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Jérome Fournier,et al.  Exploration and search-by-similarity in CBIR , 2003, 16th Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2003).

[50]  A. F. Adams,et al.  The Survey , 2021, Dyslexia in Higher Education.

[51]  Harris Wu,et al.  The effects of fitness functions on genetic programming-based ranking discovery for Web search: Research Articles , 2004 .