The Roles of APC and Axin Derived from Experimental and Theoretical Analysis of the Wnt Pathway

Wnt signaling plays an important role in both oncogenesis and development. Activation of the Wnt pathway results in stabilization of the transcriptional coactivator β-catenin. Recent studies have demonstrated that axin, which coordinates β-catenin degradation, is itself degraded. Although the key molecules required for transducing a Wnt signal have been identified, a quantitative understanding of this pathway has been lacking. We have developed a mathematical model for the canonical Wnt pathway that describes the interactions among the core components: Wnt, Frizzled, Dishevelled, GSK3β, APC, axin, β-catenin, and TCF. Using a system of differential equations, the model incorporates the kinetics of protein–protein interactions, protein synthesis/degradation, and phosphorylation/dephosphorylation. We initially defined a reference state of kinetic, thermodynamic, and flux data from experiments using Xenopus extracts. Predictions based on the analysis of the reference state were used iteratively to develop a more refined model from which we analyzed the effects of prolonged and transient Wnt stimulation on β-catenin and axin turnover. We predict several unusual features of the Wnt pathway, some of which we tested experimentally. An insight from our model, which we confirmed experimentally, is that the two scaffold proteins axin and APC promote the formation of degradation complexes in very different ways. We can also explain the importance of axin degradation in amplifying and sharpening the Wnt signal, and we show that the dependence of axin degradation on APC is an essential part of an unappreciated regulatory loop that prevents the accumulation of β-catenin at decreased APC concentrations. By applying control analysis to our mathematical model, we demonstrate the modular design, sensitivity, and robustness of the Wnt pathway and derive an explicit expression for tumor suppression and oncogenicity.

[1]  Reinhart Heinrich,et al.  A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. , 1974, European journal of biochemistry.

[2]  P. Polakis,et al.  Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[3]  C. Marshall,et al.  Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal-regulated kinase activation , 1995, Cell.

[4]  R. Heinrich,et al.  The Regulation of Cellular Systems , 1996, Springer US.

[5]  P. Polakis,et al.  Wnt-1 regulates free pools of catenins and stabilizes APC-catenin complexes , 1996, Molecular and cellular biology.

[6]  D. Fell Understanding the Control of Metabolism , 1996 .

[7]  B. Kholodenko,et al.  Quantification of information transfer via cellular signal transduction pathways , 1997, FEBS letters.

[8]  J. Gerhart,et al.  Cells, Embryos and Evolution , 1997 .

[9]  R. Nusse,et al.  A Drosophila Axin homolog, Daxin, inhibits Wnt signaling. , 1999, Development.

[10]  U. Alon,et al.  Robustness in bacterial chemotaxis , 2022 .

[11]  Hideki Yamamoto,et al.  Phosphorylation of Axin, a Wnt Signal Negative Regulator, by Glycogen Synthase Kinase-3β Regulates Its Stability* , 1999, The Journal of Biological Chemistry.

[12]  J. Gerhart,et al.  1998 Warkany lecture: signaling pathways in development. , 1999, Teratology.

[13]  M. Kirschner,et al.  Control of beta-catenin stability: reconstitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts. , 2000, Molecular cell.

[14]  Marc W. Kirschner,et al.  Control of b-Catenin Stability : Reconstitution of the Cytoplasmic Steps of the Wnt Pathway in Xenopus Egg Extracts , 2000 .

[15]  Marc W. Kirschner,et al.  Physiological regulation of β-catenin stability by Tcf3 and CK1ε , 2001, The Journal of cell biology.

[16]  J C Reed,et al.  Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. , 2001, Molecular cell.

[17]  Raymond L. White,et al.  Siah-1 mediates a novel beta-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. , 2001, Molecular cell.

[18]  Edward H. Koo,et al.  Presenilin Couples the Paired Phosphorylation of β-Catenin Independent of Axin Implications for β-Catenin Activation in Tumorigenesis , 2002, Cell.

[19]  Reinhart Heinrich,et al.  Mathematical models of protein kinase signal transduction. , 2002, Molecular cell.

[20]  Eric Wieschaus,et al.  Wg/Wnt signal can be transmitted through arrow/LRP5,6 and Axin independently of Zw3/Gsk3beta activity. , 2003, Developmental cell.

[21]  L. Pearl,et al.  Structural basis for recruitment of glycogen synthase kinase 3β to the axin—APC scaffold complex , 2003, The EMBO journal.