Voronoi-Based Deployment of Multi-Agent Systems

This paper considers a decentralized control scheme for Voronoi-based deployment of discrete-time multiagent dynamical systems within multi-dimensional static convex polytopic environments. The deployment objective is to drive the multi-agent system to a static configuration in which coverage of the environment is optimized. To this end, local control laws steer each agent towards a Chebyshev center of its associated time-varying polytopic Voronoi-neighborhood. By introducing a novel time-varying interaction graph, mechanisms enforcing consensus on intra-neighbor distances among subsets of agents are uncovered. Subsequently the interaction graph is exploited to provide both proofs of convergence as well as structural characterizations of static configurations.

[1]  Waleed Alsalih,et al.  Distributed voronoi diagram computation in wireless sensor networks , 2008, SPAA '08.

[2]  G. Ziegler Lectures on Polytopes , 1994 .

[3]  Francesco Bullo,et al.  Distributed Control of Robotic Networks , 2009 .

[4]  Randal W. Beard,et al.  Distributed Consensus in Multi-vehicle Cooperative Control - Theory and Applications , 2007, Communications and Control Engineering.

[5]  Cristina Stoica,et al.  Voronoi based decentralized coverage problem: From optimal control to Model Predictive Control , 2016, 2016 24th Mediterranean Conference on Control and Automation (MED).

[6]  Richard M. Murray,et al.  Recent Research in Cooperative Control of Multivehicle Systems , 2007 .

[7]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[8]  Yasamin Mostofi,et al.  Utilizing Mobility to Minimize the Total Communication and Motion Energy Consumption of a Robotic Operation , 2012 .

[9]  Efstathios Bakolas,et al.  Optimal partitioning for spatiotemporal coverage in a drift field , 2013, Autom..

[10]  Franco Blanchini,et al.  Set-theoretic methods in control , 2007 .

[11]  Mac Schwager,et al.  Unifying Geometric, Probabilistic, and Potential Field Approaches to Multi-robot Coverage Control , 2009, ISRR.

[12]  R. A. Silverman,et al.  Introductory Real Analysis , 1972 .

[13]  Sonia Martinez,et al.  Deployment algorithms for a power‐constrained mobile sensor network , 2010 .

[14]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[15]  Magnus Egerstedt,et al.  Graph Theoretic Methods in Multiagent Networks , 2010, Princeton Series in Applied Mathematics.

[16]  Herbert G. Tanner Flocking with obstacle avoidance in switching networks of interconnected vehicles , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[17]  Sorin Olaru,et al.  Optimization-based control for multi-agent deployment via dynamic Voronoi partition , 2017 .

[18]  F. Bullo,et al.  Motion Coordination with Distributed Information , 2007 .

[19]  Xiaoping Yun,et al.  On Feedback Linearization of Mobile Robots , 1992 .

[20]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[21]  Luis Rodrigues,et al.  An Optimal Control Approach to Decentralized Energy-Efficient Coverage Problems , 2014 .

[22]  Sonia Martínez,et al.  Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions , 2006, IEEE Transactions on Automatic Control.

[23]  P. Grieder,et al.  Computation of Voronoi Diagrams and Delaunay Triangulation via Parametric Linear Programming , 2004 .

[24]  Jorge Cortes,et al.  Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms , 2009 .

[25]  Boulat A. Bash,et al.  Exact Distributed Voronoi Cell Computation in Sensor Networks , 2007, 2007 6th International Symposium on Information Processing in Sensor Networks.

[26]  Francesco Bullo,et al.  Coordination and Geometric Optimization via Distributed Dynamical Systems , 2003, SIAM J. Control. Optim..

[27]  Francesco Bullo,et al.  Esaim: Control, Optimisation and Calculus of Variations Spatially-distributed Coverage Optimization and Control with Limited-range Interactions , 2022 .

[28]  Sonia Martínez,et al.  Coverage control for mobile sensing networks , 2002, IEEE Transactions on Robotics and Automation.

[29]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[30]  Krishna R. Pattipati,et al.  Distributed Algorithms for Energy-Efficient Even Self-Deployment in Mobile Sensor Networks , 2014, IEEE Transactions on Mobile Computing.

[31]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[32]  Sorin Olaru,et al.  Set-based safe predictive control for multi-agent dynamical systems , 2016 .

[33]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[34]  George J. Pappas,et al.  Flocking in Fixed and Switching Networks , 2007, IEEE Transactions on Automatic Control.

[35]  Manfred Morari,et al.  Multi-Parametric Toolbox 3.0 , 2013, 2013 European Control Conference (ECC).