On the distribution of Lachlan nonsplitting bases

Abstract. We say that a computably enumerable (c.e.) degree b is a Lachlan nonsplitting base(LNB), if there is a computably enumerable degree a such that a > b, and for any c.e. degrees w,v ≤ a, if a ≤ w or; v or; b then either a ≤ w or; b or a ≤ v or; b. In this paper we investigate the relationship between bounding and nonbounding of Lachlan nonsplitting bases and the high /low hierarchy. We prove that there is a non-Low2 c.e. degree which bounds no Lachlan nonsplitting base.

[1]  Robert W. Robinson,et al.  Interpolation and Embedding in the Recursively Enumerable Degrees , 1971 .

[2]  R. Soare Recursively enumerable sets and degrees , 1987 .

[3]  Richard A. Shore,et al.  Working below a high recursively enumerable degree , 1993, Journal of Symbolic Logic.

[4]  Rodney G. Downey,et al.  Highness and Bounding Minimal Pairs , 1993, Math. Log. Q..

[5]  R. Shore The recursively enumerable α-degrees are dense , 1976 .

[6]  S. Barry Cooper,et al.  Rigidity and definability in the noncomputable universe , 1995 .

[7]  Alistair H. Lachlan,et al.  Lower Bounds for Pairs of Recursively Enumerable Degrees , 1966 .

[8]  R. Friedberg,et al.  TWO RECURSIVELY ENUMERABLE SETS OF INCOMPARABLE DEGREES OF UNSOLVABILITY (SOLUTION OF POST'S PROBLEM, 1944). , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[9]  A. Lachlan A recursively enumerable degree which will not split over all lesser ones , 1976 .

[10]  A. Nies,et al.  Interpretability and Definability in the Recursively Enumerable Degrees , 1998 .

[11]  Alistair H. Lachlan Bounding Minimal Pairs , 1979, J. Symb. Log..

[12]  Steven D. Leonhardi Nonbounding and Slaman Triples , 1996, Ann. Pure Appl. Log..

[13]  S. Barry Cooper Minimal Pairs and High Recursively Enumerable Degrees , 1974, J. Symb. Log..

[14]  C. E. M. Yates A Minimal Pair of Recursively Enumerable Degrees , 1966, J. Symb. Log..

[15]  G. Sacks ON THE DEGREES LESS THAN 0 , 1963 .

[16]  S. Barry Cooper On a Conjecture of Kleene and Post , 2001, Math. Log. Q..

[17]  Richard A. Shore,et al.  Working below a low2 recursively enumerably degree , 1990, Arch. Math. Log..

[18]  S. Cooper,et al.  The jump is definable in the structure of the degrees of unsolvability , 1990 .