Effect of fuel type on equivalence ratio measurements using chemiluminescence in premixed flames

Abstract Local temporally-resolved measurements of chemiluminescent intensity from OH ∗ , CH ∗ and C ∗ 2 radicals were obtained in premixed counterflow flames operating with propane and prevaporised fuels (isooctane, ethanol and methanol), for different equivalence ratios and strain rates. The results quantified independently the effects of fuel type, strain rate and equivalence ratio on chemiluminescent emissions from flames. The ability of chemiluminescent intensity from OH ∗ , CH ∗ and C ∗ 2 radicals to indicate heat release rate depends strongly on fuel type. The intensity ratio OH ∗ /CH ∗ has a monotonic decrease with equivalence ratio for all fuels and can be used to measure equivalence ratio of the reacting mixture. For propane and isooctane, the OH ∗ /CH ∗ ratio remains independent of flame strain rate, whereas some dependence is observed for ethanol and methanol.

[1]  Zuo-hua Huang,et al.  Characterization of laminar premixed methanol-air flames , 2006 .

[2]  P. Malte,et al.  Oxides of nitrogen formed in high-intensity methanol combustion , 1979 .

[3]  Yuji Ikeda,et al.  Measurement of the local flamefront structure of turbulent premixed flames by local chemiluminescence , 2000 .

[4]  Derek Bradley,et al.  Lewis number effects on turbulent burning velocity , 1985 .

[5]  Yuji Ikeda,et al.  Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames , 2000 .

[6]  David S. Dandy,et al.  Numerical and Experimental Studies of Hydroxyl Radical Chemiluminescence in Methane-Air Flames , 1992 .

[7]  C. S. Marques,et al.  Mapping of Luminescent Species in a Flame Front , 1998 .

[8]  Ke Zeng,et al.  Determination of the laminar burning velocities for mixtures of ethanol and air at elevated temperatures , 2007 .

[9]  Donald J. Patterson,et al.  In-cylinder measurement of mixture maldistribution in a L-head engine , 1995 .

[10]  Y. Hardalupas,et al.  Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame , 2004 .

[11]  F. Smith,et al.  Flame stretch rate as a determinant of turbulent burning velocity , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[12]  Y. Ikeda,et al.  Multi-point time-series observation of optical emissions for flame-front motion analysis , 2003 .

[13]  Norbert Peters,et al.  Approximations for burning velocities and markstein numbers for lean hydrocarbon and methanol flames , 1997 .

[14]  Jerry Seitzman,et al.  Optical equivalence ratio sensors for gas turbine combustors , 2005 .

[15]  Yannis Hardalupas,et al.  Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK) , 2004 .

[16]  Yannis Hardalupas,et al.  Flame chemiluminescence studies of cyclic combustion variations and air-to-fuel ratio of the reacting mixture in a lean-burn stratified-charge spark-ignition engine , 2004 .

[17]  U. Vandsburger,et al.  A global reaction model for oh* chemiluminescence applied to a laminar flat-flame burner , 2003 .

[18]  A. G. Gaydon The spectroscopy of flames , 1957 .

[19]  Yuji Ikeda,et al.  Basic aspects of OH(A), CH(A), and C2(d) chemiluminescence in the reaction zone of laminar methane–air premixed flames , 2005 .

[20]  T. Mantel,et al.  Fundamental mechanisms in premixed turbulent flame propagation via flame–vortex interactions: Part I: experiment , 1999 .

[21]  M. Q. McQuay,et al.  An experimental study on the effect of pressure and strain rate on CH chemiluminescence of premixed fuel-lean methane/air flames , 2001 .

[22]  J. Schneiderman,et al.  C2 Swan band laser-induced fluorescence and chemiluminescence in low-pressure hydrocarbon flames , 2005 .

[23]  Y. Hardalupas,et al.  Spatial Resolution of a Chemiluminescence Sensor in a Model Gas Turbine Combustor , 2005 .

[24]  Domenic A. Santavicca,et al.  Sensors for measuring primary zone equivalence ratio in gas turbine combustors , 1999, Other Conferences.

[25]  Shohji Tsushima,et al.  The development of a light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion fields , 1999 .

[26]  A. Marchese,et al.  Hydroxyl radical chemiluminescence imaging and the structure of microgravity droplet flames , 1996 .

[27]  M. Q. McQuay,et al.  Systematic measurements of OH chemiluminescence for fuel-lean, high-pressure, premixed, laminar flames , 2001 .

[28]  D. Bradley,et al.  The measurement of laminar burning velocities and Markstein numbers for iso-octane-air and iso-octane-n-heptane-air mixtures at elevated temperatures and pressures in an explosion bomb , 1998 .

[29]  Norimasa Iida,et al.  Combustion Analysis of Methanol-Fueled Active Thermo-Atmosphere Combustion (ATAC) Engine Using a Spectroscopic Observation , 1994 .

[30]  Y. Hardalupas,et al.  LOCAL EQUIVALENCE RATIO AND DEGREE OF PREMIXEDNESS OF REACTING MIXTURE IN SWIRL-STABILISED NATURAL GAS FUELLED BURNERS * , 2005 .

[31]  Michael C. Drake,et al.  Local fuel concentration measurements in internal combustion engines using spark-emission spectroscopy , 2002 .

[32]  Marshall B. Long,et al.  Experimental and computational study of CH, CH*, and OH* in an axisymmetric laminar diffusion flame , 1998 .

[33]  Y. Ikeda,et al.  Detail distributions of OH*, CH* and C2* chemiluminescence in the reaction zone of laminar premixed methane/air flames , 2000 .

[34]  A. Thomas,et al.  Sound emission from open turbulent premixed flames , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[35]  Celso A. Bertran,et al.  Chemiluminescent Emission Data For Kinetic Modeling Of Ethanol Combustion , 2004 .

[36]  R. R. John,et al.  Effect of Turbulence on Radiation Intensity From Propane-Air Flames , 2012 .

[37]  Nick G Glumac,et al.  Flame Emission Spectroscopy for Equivalence Ratio Monitoring , 1998 .

[38]  H. Itoh,et al.  An Instantaneous Measuring Method of Air-fuel Ratio by Luminous Intensity of Radicals (Application to Practical Burner Flames) : Series B : Fluid Engineering, Heat Transfer, Combustion, Power, Thermophysical Properties , 1987 .

[39]  Fokion N. Egolfopoulos,et al.  Direct experimental determination of laminar flame speeds , 1998 .

[40]  Ioannis P. Androulakis,et al.  Molecular Structure Effects On Laminar Burning Velocities At Elevated Temperature And Pressure , 2004 .

[41]  H. Hashimoto,et al.  Local chemiluminescence spectra measurements in a high-pressure laminar methane/air premixed flame , 2002 .

[42]  Katia Devriendt,et al.  Direct Identification of the C2H(X2Σ+) + O(3P) → CH(A2Δ) + CO Reaction as the Source of the CH(A2Δ→X2Π) Chemiluminescence in C2H2/O/H Atomic Flames , 1997 .